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EXECUTIVE SUMMARY 

This document is a public deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 

project. This deliverable focuses on the initial requirements, design and interface protocols for 

realizing distributed service orchestration, execution and lifecycle management of demanding 

interactive services across a distributed network of heterogeneous execution zones.  

The scope of this deliverable is threefold. First, it captures the requirements for orchestrating and 

managing demanding interactive services and execution resources in a distributed manner within 

and across one or more networking domains. Second, it describes the initial high-level designs and 

interfaces of the FUSION orchestration, execution and service layers. Third, it provides initial 

algorithms for dealing with service provisioning as well as initial models for dealing with service 

scaling  by analyzing service usage patterns. 

In FUSION, we want to be able to automatically deploy and manage demanding interactive services 

across a network of heterogeneous execution environments. FUSION services can be either pre-

deployed or deployed on demand in optimized locations throughout a network domain for handling 

both short-lived request/response as well as long-lived interactive demanding applications. To 

enable this, we envision four key layers, namely an orchestration layer for managing services across 

execution environments across a networking domain, an execution layer for handling service state 

management and resource management, a service layer for describing and managing FUSION 

services, and a networking layer for efficiently routing service requests to the best service instances. 

The first three layers are described in this deliverable, the networking layer is described in 

Deliverable D4.1. 

This deliverable first describes the initial requirements and constraints related to distributed service 

management, placement and orchestration in a network domain. It discusses the impact of service 

composition, parameterization and interactivity constraints onto key orchestration, lifecycle 

management as well as resource management functions, including deployment, placement, 

monitoring, heterogeneity, etc. We also discuss the key requirements regarding deploying FUSION 

orchestration and management on top of existing data centre management infrastructures. 

In the second part of the deliverable, each of the key layers (i.e., service layer, orchestration  layer 

and execution layer) are then discussed in detail in separate sections. We start by describing various 

types of service composition, and their impact on FUSION. We also describe what aspects of the 

services need to be described and provided to FUSION when registering a new service to enable 

automated and optimized deployment and management of FUSION services within the FUSION 

architecture. Next, we introduce the concept of service session slots as a possible solution for dealing 

with many of the issues regarding scalability and manageability of service instances within the 

service routing plane. Finally, we provide an initial set of interfaces for managing FUSION services. 

Next we discuss the overall architecture and high-level design of the domain orchestration layer, 

identify and discuss the key functions, and describe the concept of evaluator services for flexible 

decentralized service placement across multiple execution zones. We also provide an initial set of 

interfaces for managing service orchestration and deployment within a FUSION domain. 

Finally, we discuss the service execution, state as well as resource management, which is the 

responsibility of a zone manager in a FUSION execution zone. We describe an initial high-level design 

of a FUSION execution zone and a zone manager and propose an overlay method using a data centre 

abstraction layer to enable easy deployments of an execution zone on top of various types of data 

centre management infrastructures. We also focus on service deployment scenarios and the FUSION 

monitoring infrastructure. We finish this part by describing the initial set of interfaces for managing a 

FUSION execution zone.  
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In the last part of the deliverable, we provide initial models for describing use patterns, which can be 

used for automatically scaling service instances up or down based on predicted usage patterns. We 

also provide a methodology and algorithm for service provisioning of atomic services in a 

decentralized execution environment. We propose an auction-based resource allocation model for 

this purpose. 

In the second year of the project, we will focus on expanding each of the layers, studying the 

interdependencies and interactions of each layer in more detail, and start refining and validating the 

high-level designs and interfaces of each layer. We will also study and evaluate the proposed 

placement, service selection and deployment methods and algorithms in more detail, using the 

demonstrator setup as a proof-of-concept evaluation platform. 
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1. SCOPE OF THIS DELIVERABLE 

This deliverable focuses on the service management layers of the FUSION architecture: the 

orchestration layer, the execution layer and the service layer. We start by describing the key 

requirements for distributed service management, followed by a high-level decomposition and 

design of each layer and an initial description of the key management interfaces and protocols. 

In the first year of the project, we focused on the key requirements and constraints related to the 

automated deployment and management of demanding interactive services across a heterogeneous 

network of execution environments for deploying such services. We studied the impact of service 

composition and parameterization on service instantiation and service selection. Then we identified 

the key functions of each layer, followed by an initial high-level design of each layer. We also started 

working on a number of strategies and algorithms regarding efficient service placement, service 

scaling, and service deployment. We also identified already initial high-level interfaces at each layer 

for managing the services, the resources within a FUSION domain as well as within the FUSION 

execution zones.  

Each of these requirements, interfaces, designs and algorithms will be evaluated and expanded in 

the second and third year of the project. Each of the functions will be described and modelled in 

more detail, and the key interfaces will be worked out in more detail and evaluated with real FUSION 

deployment scenarios. We will rely on the initial demonstrator design and dedicated test cases for 

feedback regarding the effectiveness of the design and interfaces, and use this as input for updating 

and tuning each of the key management and orchestration components. 
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2. REQUIREMENTS AND CONSTRAINTS 

In this section, we will describe the key functional and operational requirements and constraints that 

the FUSION architecture should support with respect to the services, the orchestration layer and the 

execution environments. We will focus on a number of key issues and start by highlighting the 

various options that we could consider, and discuss what direction we plan to take with FUSION for 

managing real-time demanding services distributed across a set of heterogeneous execution 

resources with varying network constraints. At the end of each topic, we explicitly list the key 

requirements and how FUSION should or must be able to handle these requirements and scenarios. 

2.1 Decision levels 

FUSION enables a very dynamic distributed deployment and management of services and routing of 

service requests to these services. Each of these aspects involve a number of key decisions that can 

be made by different components at different moments in the life cycle of the services. At one end of 

the spectrum, these decisions can be made statically upfront by the service provider. At the other 

end of the spectrum, these decisions could be made very dynamically, involving multiple 

components to make the final decision.   Different service and content distribution systems handle 

these decisions at different levels. In this section, we will briefly give an overview of the various 

decision levels, and compare the FUSION architecture with a number of existing service and content 

distribution systems. 

• Level 0: none, external decision 

The decision is made up front, outside the infrastructure in which the services are running. For 

example, a classic webhosting company managing their own services decides how many 

instances to deploy to handle the incoming requests. The decision to spawn extra instances to 

handle the increased load is done externally by the webhosting company. 

• Level 1: static, preconfigured or random decision 

In this case, the decision is preconfigured and done in a rather static manner. For example, the 

webhosting company registers its host address(es) to a DNS service. These registered IP address 

(or addresses) are then used when resolving a domain name. 

• Level 2: making the decision involves the network level 

The decision to for example create a new service instance or to select an existing instance is 

done on-the-spot at the network level or service routing level when a service request comes in 

or when the network decides to scale some services based on predicted demands. 

• Level 3: making the decision involves the orchestration level 

The decision to for example create a new service instance or to select an existing instance is 

done on-the-spot and involves (also) a domain-level orchestrator that manages a distributed set 

of resources and services. In this case, the network layer involves an orchestration layer to help 

making the decision. 

• Level 4: making the decision involves the application level 

The decision to for example create a new service instance or to select an existing instance is 

done on-the-spot and involves application software. This involves ultimate flexibility, as this 

means application-specific services are involved in making the final decision of where to deploy 

a new instance or which service instance to route a particular request to. An example of the 

former is the concept of evaluator service that we introduce in FUSION, which helps the 

orchestrator to decide where and how to deploy new instances in a particular execution zone.  
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As an example, we illustrate for a number of platforms and architectures at what level of flexibility 

the decision for selecting an instance to route a request to and for instantiating new services is 

performed. This is shown in Figure 1 for two key functions, namely service instantiation and service 

selection. In FUSION, we envision that the decision where and when to deploy new instances could 

be triggered at the network level, the orchestration level and may also involve the application level 

(for example, by means of evaluator services). Although obviously FUSION can just as well handle the 

more static instantiation scenarios, we mainly envision the more dynamic and flexible instantiation 

scenarios for dynamically deploying new instances in an optimal location. Regarding service 

selection, we envision FUSION to mainly operate at the networking and orchestration layer for 

automatically selecting an optimal instance, based on for example geographical, network or other 

requirements.   

Comparing that to a classic cloud infrastructure, it is obvious that FUSION is targeting much more 

dynamic service selection and instantiation scenarios. In classic cloud deployments, services are 

typically deployed explicitly in a rather static manner, and rely on the elastic cloud scaling 

functionality for automatically scaling up and down new instances inside the cloud environment. 

Service selection is typically handled by an elastic load balancer acting as a front-end towards one or 

more instances deployed across the cloud infrastructure. The service requests are typically balanced 

either randomly or based on the load in each instance, rather than based on for example 

geographical or network related metrics. Similar comparisons can also be made for other service 

deployment and selection architectures, as also discussed on more detail in the related work 

sections. 

 

Figure 1: Dynamicity of service selection and instantiation for various frameworks 

 

2.2 Distributed demanding interactive services 

Within the FUSION project, we are targeting applications that go far beyond the static content 

distribution or classic three-tier web applications. We are targeting interactive demanding real-time 

applications that often have very specific requirements with respect to their execution environment, 

geographical deployment, etc. We refer to Deliverable D5.1 for a more detailed description of these 

requirements. 
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Figure 2: Comparison of FUSION related to other frameworks regarding service dynamicity and 

service or content distribution 

 

Req no. Description Level
1
 

DS-1 
Support for automatically placing, deploying and scaling distributed 

composite services 
M 

DS-2 
Support for demanding interactive services that are automatically 

deployed and managed across distributed execution zones 
M 

 

2.3 Service composition 

In FUSION, we want to be able to support composite services that are deployed in a distributed 

manner across multiple heterogeneous execution zones that are spread across the network. This 

allows service providers to optimally take advantage of the network and compute resources offered 

by a FUSION orchestrator (e.g., an operator), enabling higher QoS guarantees towards these services. 

For example: 

• More latency-bound sensitive services that require close interaction with the end users and/or 

are very personalized for a particular user can be deployed in a very distributed manner on 

smaller execution zones with limited resources near the access network of the end user. 

• Common service components, data bases, etc., which are less sensitive or which require more 

centralized computing capabilities and/or which are shared amongst many end users can or 

should be deployed more centralized in the network, for example in large data centres with 

virtually infinite compute and internal networking resources. 

Secondly, this also allows multiple services to work together to implement a desired high-level 

functionality. For example: 

                                                             
1
 The abbreviations indicate the level of importance and follow the MoSCoW method. 

http://en.wikipedia.org/wiki/MoSCoW_Method 
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• A game server service has to communicate with multiple cloud game clients to implement a 

multi-player game scenario. 

• An EPG service streaming personalized content to a thin client, but itself receiving video streams 

from various other sources. 

• A dashboard presenting different media like photos, private videos, VOD mash-ups, and video 

chats needs a variety of service components connected together. 

Req no. Description Level 

SC-1 

Optimized and automated deployment and management of 

different types of static and dynamic service graphs that are 

distributed across heterogeneous execution zones 

M 

SC-2 
Support for personalized and multi-user collaborating related 

services 
M 

2.4 Service parameterization 

When deploying or interacting with a particular service, it may be necessary or desired to be able to 

customize the runtime behaviour of a service instance to the requirements and needs of a particular 

customer or end user, without having to manage each particular flavour as a completely different 

service type. In this section, we will discuss some of the possibilities and implications of allowing 

different levels of parameterization at different stages in the lifecycle of a service instance and for 

selecting a particular service type. 

2.4.1 When can parameters or parameter values be provided 

Service parameter values can be provided at several stages: 

• At design time 

A service developer can specify a number of service-level parameters and default values that 

will be applied later when deploying or accessing an instance of that service. 

• At deployment time 

In FUSION, a deployment of a new service instance may be issued by different entities. For 

example, a FUSION domain orchestrator may decide to automatically deploy new instances 

based on predicted service load or active monitoring information. For this, it may use specific 

parameter values, provided by the service provider that registered the service into a FUSION 

domain. New services instances may also be deployed explicitly or implicitly by other service 

instances, potentially with very specific deployment parameters (e.g., resolution, input sources, 

etc.). Lastly, it may also be explicitly triggered by a service provider that instructs FUSION to 

deploy specific instances, possibly at specific locations and moments in time, with specific 

deployment parameters. 

• At request time 

When a client makes a FUSION service request to initiate a new session, it may provide a 

number of parameter values to customize the session (e.g., encoder type, resolution, frame 

rate, etc.). This may or may not impact the selection of a particular service instance to host that 

specific session (e.g., some instances may only support SD quality or H.264 encoding). 

• During an active service session 

As we are targeting interactive services, the client will typically impact the behaviour of the 

service sessions through one or more feedback channels. This could involve changes in the 
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dynamic service instance graph, for example when the client selects a different video channel or 

starts a new game session from a dashboard. 

A key question is to what extent FUSION needs to be aware of some or all of these parameters, and 

to what extent it may impact some of the instantiation, placement or even service selection 

protocols. We will discuss this topic in the next sections. 

2.4.2 Visibility of the service parameters 

A key question is how FUSION should treat these parameters. Three options are possible: 

• All service parameters are invisible to FUSION 

In this case, the service parameters are merely seen as a blob of data from the perspective of 

FUSION. FUSION does not care about these parameters nor does it need to understand the 

underlying format and protocol used by the service type and the invoker (which can be the 

service provider, another service, the client, etc.). On the downside, it also means FUSION 

cannot directly leverage some of these parameter values as input in its decision process (e.g., 

during placement, deployment, service routing, etc.). 

• All service parameters are visible to FUSION 

In this case, all service parameters are visible to FUSION, and FUSION can use some of these 

parameters to make a better decision where to deploy a new service instance or to what 

instance to route a service request. However, for FUSION to understand these parameters, they 

must all be represented by a standardized scheme, possibly making service parameterization 

much more complex or constrained in terms of parameter types, formats, etc. 

• Hybrid parameterization scheme: some parameters are visible, whereas others are not 

In this model, some of the parameters are visible and understandable by FUSION and others are 

not. This thus provides a combination of both service-specific and more FUSION-specific service 

parameters; in this case the responsibility for the selection of service type and/or service 

instance that meets the requested parameter values is left up to the application layer.. The 

former can be very application-specific and FUSION does not care about these parameters. The 

latter consist of parameters that may be relevant for FUSION in making decisions. 

In the initial architecture and design of FUSION, we assume that all service parameters are invisible 

to FUSION components. This immediately also implies that none of these parameters will be able to 

directly impact some of the key functions of FUSION, like service placement, service deployment and 

service routing. Indirectly, these service parameters may still influence for example service 

placement, by means of the evaluator services, that are capable of interpreting these service-specific 

parameters and that may impact in what execution zone a new service would be deployed. 

2.4.3 Parameter classes 

Assuming some of these parameters are visible to FUSION, we envision a number of key parameter 

classes that may provide valuable information towards the service instance as well as FUSION. 

• Functional parameters 

This is a set of mostly very service-specific parameters that may directly impact the overall 

operation of that instance while handling one or more service sessions. 

• QoS parameters 

Potential QoS parameters may involve bandwidth and latency requirements, jitter, traffic 

profiles, resolution, frame rate, visual quality, etc. 

• Business parameters 
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This includes parameters like cost, licensing aspects, etc. For example, some clients may only 

have access to low-cost instances that offer lower visual qualities or lower overall QoE, whereas 

other clients may pay for accessing premium instances that offer the best QoE, but at a higher 

cost. 

• Geographical parameters 

As we are targeting low-latency demanding interactive service, the location of particular service 

instances with respect to the location of other communicating services (cfr., the service graph) 

or the application client may be of key importance and will likely impact service placement and 

service selection decisions. 

• User and session parameters 

This set consists of parameters that involve user identification and authorization, user 

preferences and its environment (e.g., co-players, family members also involved in the same 

application, a multi-person video conference, etc.) 

• Security related parameters 

These parameters may involve encryption, DRM, and other more generic security related 

parameters. 

• Other non-functional types of parameters 

There may be other types of parameters that are also relevant for particular service types or 

service deployments or service sessions. 

2.4.4 Impact for the FUSION architecture 

As already mentioned above, each of these parameter values may impact some of the core FUSION 

functions. For example, it may impact where and how an instance is deployed, what instance to 

choose from (e.g., based on distance, cost, etc.). The core FUSION functions alone may not always be 

able to interpret what impact it may have at the orchestration layer or the service routing layer, and 

therefore could rely on evaluator services in assessing the situation and assisting FUSION in making 

an optimal decision. Obviously, relying on external evaluator services may have an impact latency, so 

a key aspect will be to decide to what extent and where we use these evaluator services for making 

such assessments. This aspect is discussed in more detail in other sections that involve the evaluator 

services. 

For the initial design of FUSION, we take rather conservative approach, where we only want 

parameters to have impact on FUSION when strictly required. We obviously want to take into 

account geographical information during deployment and service request routing, as well as take 

into account the capabilities of an execution environment when deploying a particular service using 

evaluator services.  

For other parameters, we will assume for now that they will not impact FUSION with respect to 

service routing, service placement or service placement. With this strategy, a service provider then 

needs to register services with specific requirements as separate service types, in which case the 

parameterization will be done implicitly by selecting the appropriate service type. For example, low 

cost instances and premium instances of the same service in this scenario can be modelled as 

separate service types. The disadvantage of this strategy is that it restricts the overall flexibility of the 

solution, or may result in an explosion of similar service types that all have to be registered 

separately. Note that the latter issue could be partially alleviated by providing an automatic 

intelligent multi-service registrar service, where a service provider only has to deploy one service 

type, which is then automatically translated into a series of service types. 
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2.4.5 Summary of requirements 

Below a summary of the initial set of requirements related to service parameterization. 

Req no. Description Level 

SP-1 Allow for service parameterization at design time M 

SP-2 Allow for service parameterization at deployment time M 

SP-3 Allow for service parameterization at request time M 

SP-4 Allow for service parameterization during a service session M 

SP-5 Require all service parameters to be visible to FUSION W 

SP-6 Allow FUSION-visible service parameters at all levels C 

 

2.5 Service registration  

In FUSION, we want multiple service providers to be able to register and deploy services into a 

FUSION orchestration and routing domain, enabling internal and external service developers and 

providers to leverage the available infrastructure and QoS capabilities that an orchestration domain 

offers. This enables on the one hand ISPs to easily and quickly deploy new service types onto their 

own infrastructure, but also allows external entities to deploy new service types without having to 

invest in the corresponding compute and networking infrastructure. Consequently, FUSION requires 

a service registrar where services can be registered or unregistered. To enable automated 

(pre)deployment and management of these services, these services should be fully contained and 

self-describing so that FUSION knows its requirements, policies as well as deployment information. 

As part of the service registration procedure, this may automatically trigger FUSION to start 

deploying instances of the new service type and start configuring the FUSION routing plane so that 

clients can immediately start accessing the new (or updated) service type. 

 

Req no. Description Level 

SR-1 
Allow internal service providers to (un)register new services at any 

moment in time 
M 

SR-2 
Allow external service providers to (un)register new services at any 

moment in time (depends on business model) 
S 

SR-3 
The service description contains all requirements, dependencies and 

policies to be able to automatically deploy and manage the service 
M 

SR-4 

After service registration, FUSION needs to automatically make the 

new service accessible within a FUSION domain. This may include 

automatically deploying instances of the new service, and 

configuring the service routing plane. 

M 

 



D3.1 Initial Spec. of algorithms & protocols for service-oriented network mgmt Page 21 of 146
 

Copyright © FUSION Consortium, January 2014 

2.6 Service selection 

One of the key functions of FUSION is automatically selecting the best instance for each individual 

service request. Depending on the service type, service selection may be done at different levels. For 

some service types, service selection can be done by the FUSION routing plane, which then may 

directly forward the request to the selected instance or merely return its corresponding locator.  

For more complex services like a multi-player game, this is not always feasible, as multiple users may 

want to join the same game session, which means they have to be able to specifically join the same 

game server that is hosting the game session. In this case, the optimal selection of a common game 

server could be done via the FUSION orchestration plane, which needs to take into account also the 

location of the game client services of the involved users. 

For long-lived sessions with very specific requirements or parameters, evaluator services could be 

used for helping a FUSION orchestration domain in finding a proper service instance. 

 

Req no. Description Level 

SS-1 Network-driven service selection M 

SS-2 Orchestration-driven service selection M 

SS-3 Application-driven service selection S 

 

2.7 Service provisioning and deployment 

Cloud is primarily driven by economics and hence a service provider aims to accommodate as many 

requests as possible with the objective to maximize profit. Pre-provisioning, which is the act of 

reserving the necessary resources in advance without already necessary using them, allows for faster 

re-action times for handling future service requests. Consequently, the cost for pre-provisioning is 

amortized by the benefits for respecting the service SLAs regarding the response time for handling 

the service requests. 

A challenge of cloud computing is the management of optimal allocation strategies for 

computational resources for various types of service requests. It is essential that the trends of 

different request streams are identified to organize pre-allocation strategies in a predictive way. This 

calls for designs of intelligent modes of interaction between the client request and cloud computing 

resource manager. See also [GOPA11]. 

In the case of on-demand deployment, the resource utilisation is increased since resources are only 

deployed when needed. However, on-demand deployment induces additional stress on several 

levels: 

• Stress in timeliness 

• On the level of mapping algorithms whereby actual state of the ecosystem is taken and the 

on-demand request is mapped onto the available resources. This mapping problem is an NP 

complete problem for which a timely response is expected to have reasonable request-

response times. Moreover, due to the parameterisation in FUSION on several levels 

(manifests, topology, heterogeneous HW etc), the complexity for the mapping increases. 

• On the level of deployment itself, notably concerning the speed with which one can deploy 

new instances of a service. For example, the start-up time of container-based virtualization 
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versus virtual machine start-up, the overhead for transporting and installing all software 

packages or VM images, starting the application services, installing monitoring probes, etc.  

• On the interactivity of FUSION control signalling (soft real-time interactive versus batched). 

• On the propagation of current state metrics of the executing layer with propagation delay. 

• Quality of service deployment, any impact on actual deploying of resources (e.g. lack of 

resources due to transient state differences) and need to re-deploy, possibly re-orchestrate, 

impacting time (current is batch processing). 

• On the provisioning of necessary networking resources. 

• Stress in optimized resource usage  

• For example in case a service request is received, a new instance may have to be deployed or 

an existing instance or deployment may be reused. In other cases, services could be co-

located, depending on their processing and resource characteristics. 

In case of pre-deployment, resources are reserved and used in advance, mainly to reduce service 

request-response delays. Different  stages of pre-deployment are possible, including: 

• Physical server start-up but no deployment of any specific service. 

• Pre-deployment of the service software onto the execution environments that will host the 

service, but without already starting the service.  

• Pre-deployment of the runtime components of a service towards different servers that will host 

the service. 

Pre-provisioning and pre-deployment require an assessment of near-future service utilisation and 

corresponding execution layer resource requirements whereby resource consumption and cost are 

highly dependent on an accurate prediction of service and corresponding resource consumption over 

time. This requires service utilisation monitoring in order to learn service request patterns.  

Note that one should make a distinction between pre-fetching, caching and pre-provisioning.  

In case of pre-fetching, this indicates fetching service software prior to a request. This induces extra 

network and storage cost in case of inefficient pre-fetching. Caching on the other hand is a post-

deployment optimization where portions of a service deployment are maintained for a period of 

time although the service is currently no longer used. This serves as a service pre-allocation for 

future service requests. Caching may induce a cost related to compute, network and storage 

resources in case of inefficient caching strategies or predictions. Pre-provisioning as defined here is 

the deployment of a service up to a running state. In case of pre-provisioning, the following 

parameters could be taken into account: 

• Time to get up and running 

• Used computing resources and its induced cost  

• Due to the reservation of compute resources, other services cannot always use these resources, 

so there may be an important impact on revenue and cost models. 

From the above, pre-deployment has a positive impact on:  

• Faster service deployment 

• Predictability and stability of the entire ecosystem in case or qualitative prediction 

• Load balancing benefits within an orchestration domain or execution zone 

• Monitoring for service routers 
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There are a number of mixed forms possible for on-demand and pre-provisioning, based on a 

number of criteria:  

• Service types: some service are pre-deployed, others deployed on demand. Different criteria can 

be used to make segregation (e.g. service request-response time, service deployment timing, 

etc.) 

• Mixed forms of virtual pre-provisioning whereby one makes an estimation of the amount of 

services that can be supported by an execution zone without actually pre-deploying the 

resources. This technique allows to plan in advance resource allocation but induces 

compartmentalisation of physical resources and ultimately sub-optimal cost and revenue 

management. 

• Extending the previous option to allow the correction of virtual allocation of services and 

resources on an on-demand basis is likely to reduce compartmentalization as well as improving 

resource utilisation. 

 

Req no. Description Level 

SPD-1 Fully automated service provisioning, deployment and instantiation M 

SPD-2 Pre-deployment of services based on predicted service demands M 

SPD-3 Automatic scaling of FUSION services across a domain M 

SPD-4 
On-demand deployment of FUSION services based on service 

requests 
M 

 

2.8 Service placement 

This section discusses some of the complexities, requirements and constraints regarding service 

placement and selection of related services.  

Related services are services that communicate with each other. A common aspect of related 

services is that performance aspects (e.g. network connection QoS related indicators) depend not 

only on the location and indicators of individual service instances (e.g. the location of service 

instances, for example of a game server), but also on their relative location (for example whether a 

game server and game clients are close to each other regarding network QoS metrics). In other 

words, in many of these cases the best location of each service instance depends on the location of 

related service instances. 

Often these dependencies are circular, meaning that the best location of one service instance 

depends on the location of another service instance, but the location of that other service instance 

depends on the location of the first service instance. 

For example, suppose the following situation, visualized in Figure 3: two users are connected to the 

internet via the same ISP with a very low-latency last mile. The ISP is connected to three data centres 

A, B and C. Data centres B and C are very well connected, for example because they are merely 

different groups of servers belonging to the same physical data centre. The ISP and data centre C has 

Linux based servers without GPUs, while data centres A and B have Windows based servers with 

GPUs, A having better GPUs than B.  
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Figure 3: Example of a trade-off between capabilities and requirements 

 

Now suppose we want to deploy a multi-player game consisting of a Linux-based game server 

connected to two Windows-based game clients, each of which are connected to one of the users 

running a thin client: 

FUSION Service Constraint: Required OS Parameter to optimize 

Game Server (S) Linux Close to the clients and close to the 

users 

Game Client 1 and 2 (C) Windows Proximity to the user is important. 

Better GPU is nice, but in this 

scenario we assume that being close 

to the server is more important than 

a better GPU. 

 

Now let us consider different options for how FUSION orchestration could operate.  

1. Suppose the orchestration first chooses the best server location alone without taking 

possible locations of the client into account. The best server location obviously is the ISP, 

because it is closest to both users. Once the server location is chosen, then the clients must 

be placed in A or B, and the better choice is obviously A because of the better GPUs. As a 

result, the connection between the servers and the clients is not optimal, see Figure 4. 
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Figure 4: Independently deploying the game service before the game clients 

 

2. If the orchestration first chooses the best locations for the clients, but without taking possible 

locations of the server into account, then the best choice for the clients would be A, because 

A is as far away from the users as B, but A has better GPUs. Once the locations of the clients 

are chosen, then the server must be placed at the ISP or at C. In the first case we get the 

same situation as before, and in the second case we get an equally bad situation, where the 

connection between the servers and the clients is bad, as is depicted in Figure 5. 

 

Figure 5: Independently deploying the game clients before the game server 
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3. Now let us assume the orchestration can choose the best locations for the server and the 

clients together by considering all possible combinations of locations. Then the best choice 

may be the following, because our assumption was that the better connection between 

server and client may be much more important than slightly better GPUs, see Figure 6. 

 

Figure 6: Deploying the game service and game clients together 

 

Of course, there may also be situations where GPU performance is more important than the 

connection between the server and clients. The purpose of this particular example is to demonstrate 

fundamental limitations of a simple orchestration approach of making the decision of the placement 

of service instances in a service graph one after the other. The conclusion from this exercise is that 

choosing the best locations for service instances only by considering the best location of each 

individual service one after the other can lead to worse results in realistic situations, leading to worse 

performance.  

The above situation is one example for this. Other motivations for having a placement algorithm that 

considers more than only individual service instances, may include: 

• It may be beneficial to run both the game server and the game clients on the same execution 

point (EP) to take advantage of a fast shared-memory communication, even when there are 

more optimal EPs for either client or server, but none of them can run both client and server in 

the most optimal way. 

• An augmented reality service needs a service providing location-based information and must 

connect to a particular database. Then the best location of the augmented reality service does 

not only depend on the distance to the user and to the database, but also on the possible 

locations of the service providing the location based information. 

The challenge is that the FUSION orchestration placement function, which wants to determine the 

best locations for such a set of related services, may need to rely on service-specific evaluation 

parameters, which is a non-trivial problem. 
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Req no. Description Level 

SP-1 Independent placement of service atoms across execution zones M 

SP-2 
Combined placement of all components of a service graph across 

execution zones 
S 

SP-3 Placement taking into account resource type availability  M 

SP-4 Placement taking into account application-specific scores M 

SP-5 Placement taking into account current and forecasted demand M 

 

2.9 Monitoring 

Currently there are already different distributed monitoring systems available (e.g. ganglia). For the 

FUSION project, different roles, functionalities and decisions can be distinguished: 

• Actual service monitoring 

• FUSION network routing monitoring 

• Service usage monitoring 

• Resource utilisation monitoring 

• Aggregation of monitoring information 

• Reporting of monitoring information 

• Propagation of monitoring information (scalability and security) 

In the FUSION project, the focus will be on the execution node platform monitoring, network 

monitoring and service monitoring. Concerning data collection and from an execution layer point of 

view, monitoring can apply to either the application services, the guest OS, hypervisor, host OS as 

well as all hardware resources (CPU, memory, networking, accelerators, etc.) 

It is on the latter topic that there is a significant degree of complexity due to the presence of 

heterogeneous HW in possibly different data centres. Furthermore, after having collected the 

monitoring data from multiple locations using various probes, another challenge is how this 

information can be combined into aggregated metrics that can be used by the zone manager, the 

domain orchestrator or networking plane. In the FUSION project, we will investigate how fine-

grained metrics can be used to improve orchestration and placement.  

It is the intent to evaluate an ecosystem whereby the different components that contribute to 

monitoring can be described in a configurable manner and allow to be combined via scriptable logic. 

The aggregated monitoring data will be used as input to the zone manager, FUSION domain 

orchestrator and routing domain, the placement algorithms, operational management and billing as 

well as for SLA monitoring towards the service and infrastructure providers (i.e., the execution zone 

and routing plane administrators). 
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Req no. Description Level 

M-1 Monitoring of available session slots M 

M-2 
Monitoring and aggregation of general application-specific 

monitoring data 
M 

M-3 Monitoring of execution zone resources S 

M-4 Aggregation of service and resource monitoring information M 

M-5 Enable scriptable monitoring logic S 

 

2.10 Inter-service communication and late binding 

Depending on the service placement, two communicating services may have been deployed on the 

same (physical or virtual) machine or another, either inside the same execution zone, across multiple 

execution zones or across execution domains (inter-domain late binding). Depending on what option 

was selected (for whatever reason), the optimal communication protocol and data transport 

mechanism may vary. For example, if two communicating services are collocated on the same 

machine, they may pass raw data directly via shared memory. If the same two services are placed on 

different machines, potentially on different execution zones or domains, the data could be 

transported over standard TCP/IP with varying underlying data transport protocols (e.g., standard 

Ethernet, RDMA, etc.). Additionally, it may be necessary to add one or more transformation 

functions in order to: 

• Minimize network resource consumption (e.g., to save bandwidth using H.264 transcoding); 

• To increase overall security (SSL encryption/decryption), both at the expense of increased 

compute resources and increased end-to-end latency. 

As a result, FUSION should support a late binding mechanism for services, to enable using an optimal 

communication channel depending on the chosen service placement distribution and physical 

mapping. Next to this, FUSION should also allow services to implement proprietary communication 

channels, to be able to support custom and dedicated communication mechanisms. An example is 

the efficient sharing of GPU buffer pointers across multiple service instances running on the same 

machine to avoid expensive copying and wasting huge amounts of bandwidth. As this is a very 

dedicated protocol, it is too specific for FUSION to support this out-of-the-box. However, FUSION 

should make it easy for services to detect these scenarios and deploy their own communication 

mechanisms via custom libraries in a reliable and secure way. In case of inter-domain late binding, 

orchestration is mainly involved as a mediator and enabler. 

Different communication technologies already exist today, which can be distinguished in a number of 

ways based on different criteria, for example, based on proximity: 

• On board communication: shared memory communication, Unix domain sockets,  DMA transfer, 

IP loopback interface, sockets, Unix pipes, ... 

• Off board communication: RDMA, RoCE, OFED, IP related protocols such as sockets HTTP, TCP, 

UDP, RTP, etc.  

Each of these technologies have their specific APIs, synchronization methods for sending data from 

one location to another. 

Different components contribute to a communication between collaborating services such as specific 

HW adapters, host OS and installed protocol stacks, kernel modules, user space libraries enabling 
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specific communication technologies, etc. Different options for late binding with respect to inter-

service communication are available based on where the decision for late binding is implemented, as 

also described in [RLZ13]: 

• Integrated into the application. This requires that the application needs to support the different 

technologies. In order to have optimal placement, orchestration needs to learn the possible 

supported interconnection technologies from the application so that it can combine this 

information with supported technologies on the hosting platform. A drawback is that the 

application needs to support several technologies even though some of these can be obsolete at 

placement or deployment time. 

• An alternative approach, also in user space, is the use of modified user libraries and system call 

layer so that the application itself is unaware from actual underlying communication technology 

used. In this case the hosting platform needs to support the different technologies. This 

technique does not apply for proprietary OS or user space libraries. Selection of actual underlying 

technology can be determined on the platform itself or by a management layer instructed by 

placement logic. Zone orchestration placement needs to learn the connectivity requirements of 

an application along with the execution capabilities in order to provide optimal placement and 

connectivity. 

• Below system calls layer and above transport layer. From orchestration point of view, this is 

similar to the above case. This option has the benefit that only the host OS needs to be modified.  

• Below IP layer. 

Implementation in different layers may bring different impacts on programming transparency, kernel 

and hypervisor transparency, seamless agility and performance overhead. Additional complexity is 

introduced in case of migration. Communication protocol state needs to be synchronised over 

different technologies. Regarding security, each communication technology differs in the security 

levels it offers. For example, shared memory communication requires that the collaborating services 

have a trust relationship. This topic impacts orchestration, placement and deployment. 

Some common features that should be taken into account for FUSION when discussing inter VM 

communication optimisation, are the following: 

• Speed: faster than TCP/IP on regular communication channel (Ethernet or loopback) 

• Auto co-residency detection (e.g., in the guest or at the host level) 

• VMM extension avoidance (general applicability) 

• Kernel patching avoidance 

• POSIX interface 

• Migration: switching between shared memory and TCP/IP 

• Security 

• Reliability  

• Stability 

• Performance: no matter whether the network protocol is TCP or UDP, the size of messages is 

extremely small or large, the arriving frequency of messages is normal or badly high, the number 

of co-resident VMs is large scale or not, the performance is expected to be reasonably stable and 

the system is supposed to operate normally. 

Metrics about different techniques are discussed in [ZLR13]. 
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Req no. Description Level 

LB-1 Support intra-node (on-board inter-VM) late binding M 

LB-2 Support intra-zone inter-node (off-board) late binding S 

LB-3 Support inter-domain late binding C 

LB-4 Support heterogeneous communication protocols and hardware S 

LB-5 
Support injection of transformation components depending on 

communication channel 
M 

LB-6 
Support injection of security components depending on 

communication channel 
M 

 

2.11 Heterogeneous execution environments 

Due to the distributed nature of the FUSION architecture, execution zones will typically be very 

heterogeneous in nature, meaning that the physical (and logical) infrastructure of each execution 

zone may be fundamentally different: 

• They may significantly differ in size: execution zones closer to the users may be very distributed 

but relatively small and perhaps specialized in nature with limited capacity; whereas the more 

centralized execution zones will likely be much larger and more generic in nature, containing a 

virtually infinite amount of capacity. The FUSION orchestrator needs to take this into account 

when deploying FUSION services onto these sets of execution zones with varying deployment 

characteristics. 

• Different execution zones may be deployed on different types of data centres, grids or cloud 

environments, each having their own management interfaces. Some may be fully virtualized and 

automated environments; others may be more dedicated physical environments. The zone 

manager needs to be able to deal with this heterogeneity in infrastructure management systems. 

• Due to the demanding nature of the types of services we intend to deploy on FUSION, we 

envision also the adoption of physical infrastructures with specialized hardware accelerators like 

GPUs, FPGAs and others, which FUSION services should be able to leverage for more efficient 

processing. A number of key challenges will be on the one hand towards the services, which 

need to specify somehow what functional and hardware capabilities they expect from an 

execution zone, and on the other hand, how an execution zone could safely and reliably expose 

these accelerators to the appropriate services. 

 

Req no. Description Level 

HE-1 Support heterogeneous data centres M 

HE-2 Support hardware acceleration (GPU, etc.) M 

HE-3 
Deployment and placement taking into account heterogeneity and 

accelerators 
M 
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2.12 Light-weight virtualization and deployment 

In the FUSION architecture, new service instances may have to be deployed relatively fast on a new 

execution zone close to the end user. To minimize deployment time, light-weight deployment and 

virtualization mechanisms may be required. Secondly, the inherent real-time nature of typical 

FUSION services can demand fine-grained resource isolation mechanisms. For example, light-weight 

virtualization techniques allow deploying new containers within seconds, whereas for full-blown 

virtualization, this can often be one to two orders of magnitude longer. 

Some additional requirements that may be relevant for making the decision to opt for a particular 

virtualization technique include the footprint, quota, scheduling and latency requirements, security 

constraints, billing purposes, scaling efficiency, migration support, package management and overall 

management tools, dependencies with respect to the host OS and libraries, etc. Other considerations 

include real-timeness, resource requirements and efficient communication mechanisms in between 

isolated services. Three example light-weight virtualization frameworks are OpenVZ [KKVZ06], LXC 

[LXC13], and Docker [DOCK13]. 

In this project, we will evaluate the feasibility and effectiveness of light-weight virtualization and 

deployment mechanisms for deploying and managing particular types of services. These 

requirements can be divided into a number of categories: 

• Isolation requirements 

The virtualization software should be able to segregate the basic resources and the network 

stack of the systems running under its supervision. Optionally, this can be extended towards 

heterogeneous hardware resources as well. 

• Efficiency requirements 

The tool should be able to cause the lowest possible overhead in order to keep the maximum of 

the host’s resources available to the VMs. 

• Scalability requirements 

The relationship between the consumption of system resources and the number of running VMs 

should be approximately linear, giving enough elasticity for the number of nodes that can be 

created in the virtual plane. 

• Flexibility requirements 

The virtualization tool must support the attachment of multiple virtual network adapters for 

each VM. 

• Monitoring requirements 

The tool should allow for monitoring of its resources and health in a configurable manner. 

 

Req no. Description Level 

LV-1 Support fast light-weight virtualization environment  S 

LV-2 Support fast light-weight deployment environment M 

 

2.13 Security and integrity 

The security aspects and requirements for FUSION have been discussed already in detail in 

Deliverable D2.1. Regarding orchestration and execution management, FUSION shares a large 
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amount of common vulnerabilities and risks as classical cloud orchestration systems. As we will build 

FUSION on top of existing cloud management platforms, we can easily leverage the existing security 

capabilities provided by the underlying platform. Obviously, at the FUSION orchestration level, 

additional security functions need to be provided and implemented to guarantee security and 

integrity of: 

• FUSION services  

• FUSION service instances 

• Service routing towards specific services (see also Deliverable D4.1) 

• Overall resource management and isolation 

In this project, we will not focus on these security topics in detail, but rather on the technical 

challenges related to the FUSION architecture. We will however validate whether a particular design 

and implementation is compliant with all relevant security requirements we described in Deliverable 

D2.1.  

2.14 Evolvability and backwards compatibility 

Evolvability means that the FUSION architecture can be gradually deployed over today’s Internet, 

rather than building on a clean-slate design. To improve the likelihood of adoption, it should be 

possible to easily deploy legacy services onto the FUSION architecture on the one hand, and to be 

able to easily deploy the FUSION architecture on existing network and compute infrastructures, data 

centres, without forcing early adopters to have to radically change their entire infrastructure and 

allocate all available resources to FUSION. 

Consequently, both for the domain orchestration and execution zone management, we opt for an 

overlay approach. The FUSION domain orchestration functions can be deployed anywhere, either by 

encapsulating them as classic data centre services, or by deploying them inside FUSION execution 

zones themselves. The execution zones and corresponding zone managers will be deployed on 

existing data centre infrastructures by adding a data centre abstraction layer, which is an agent that 

mediates between the FUSION zone manager and the existing data centre management middleware. 

FUSION services will be automatically wrapped into whatever enclosing environment the data centre 

management layer supports. Legacy services can be easily transformed into FUSION services by 

means of creating appropriate wrappers for handling state management and creating FUSION service 

manifests for handling configurability and automating deployment. 

In a later stage, we can investigate how to extend the OpenStack APIs for supporting the key FUSION 

orchestration and management functions. This would enable any data centre management platform 

supporting the OpenStack APIs to also support the FUSION orchestration and management 

capabilities, avoiding the need for an extra layer of abstraction for such environments. 

 

Req no. Description Level 

EBC-1 Deploy execution zones on existing data centre infrastructures M 

EBC-2 Wrap and deploy legacy services as FUSION services M 

EBC-3 
Integrate FUSION APIs into existing data centre management 

platforms 
C 
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3. RELATED WORK ON DISTRIBUTED SERVICE MANAGEMENT 

IN this section, we will give an overview of some of the related work regarding distributed service 

management. We will focus on orchestration aspects, execution aspects, service 

description/manifest aspects and service composition/distribution aspects. 

3.1 IRMOS 

3.1.1 IRMOS architecture and orchestration 

The general goal of IRMOS (Interactive Realtime Multimedia Applications on Service Oriented 

Infrastructures, see [IRMO11a] and related reports of the IRMOS consortium) is to enhance SLAs in a 

grid/cloud computing platform with strict quality guarantees in the transport network. To this end, 

all computational, storage and network elements of IRMOS platform provide guarantees to 

individual activities while the physical resources are shared across multiple services. IRMOS provides 

means for automatic deployment of services on best fitting resources distributed in a network. 

Within the IRMOS platform, it is the ISONI (Intelligent Service Oriented Network Infrastructure) 

component that is responsible for implementing the overall architecture including resource control 

plane, path manager, and execution environment. A schematic representation of the IRMOS 

architecture with an emphasis on the orchestration/control plane is depicted in Figure 7. Major 

elements of the platform are explained in the remainder of this section. 

 

 

Figure 7: overall IRMOS architecture. 

 

The overall coordination of service deployment process in ISONI is accomplished by the Deployment 

Manager which (in a functionally centralised manner) matches computing and network resources 

required by deployed services by negotiating needed resources with Resource Manager and Path 

Manager, respectively. 

The deployment and instantiation of a developers’ service is based on an abstract description of all 

the execution environment requirements of the service (in the form of Virtual Service Network, VSN), 

including the description of the connectivity interconnections between service components and their 

individual QoS demands. ISONI thus orchestrates service execution based on VSN specification while 

VSN description serves as a template used to instantiate “actual” VSN being an instance of the 

service. VSN, when instantiated, takes form of a virtual network with a private address namespace 

for its service components (SCs). Connections exist between service components (SC, implemented 

by corresponding virtual machines) of a given instance of VSN to exchange application data between 



D3.1 Initial Spec. of algorithms & protocols for service-oriented network mgmt Page 34 of 146
 

Copyright © FUSION Consortium, January 2014 

them. The connectivity architecture of IRMOS/ISONI with virtual service abstractions is shown in 

Figure 8. 

 

Figure 8: IRMOS/ISONI infrastructure and connectivity abstractions. 

 

In the above setting, Resource Manager is responsible for the selection of computational and storage 

resources. In particular, the timing requirements of services are taken into account through 

advanced resource reservation mechanisms. Complementary to this, Path Manager is the key 

functional block that implements control functions related to providing connectivity QoS guarantees. 

In particular, Path Manager is responsible for resource discovery, selection and necessary 

configurations and supervision of all network allocations required during the VSN life-cycle. So, Path 

Manager can be thought of as a bandwidth broker whose operation could comply with the NaaS 

paradigm. It adopts the network resource model that is derived from the ITU-T G.805 series models. 

A 2-level hierarchical architecture of Path Manager in IRMOS strictly corresponds to the hierarchical 

organisation of IRMOS platform into IRMOS “nodes” that contain (gather sets of) IRMOS “physical 

hosts” and IRMOS “domains” that are composed of physically interconnected IRMOS nodes. This 

structure allows Path Manager to have full control over basic topological aspects of connectivity 

services. 

Actually, IRMOS/ISONI assumes that Resource and Path management are split into domain and node 

level (node corresponding to a data centre, and domain to a set of nodes). The actual flow control of 

activities when instantiating a VNS takes the form of a two-step process as depicted in Figure 9 

[IRMO11b]. In the first step, Deployment Manager checks for a set of valid nodes through consulting 

with domain Resource/Path managers, and then in the second step resource reservation takes place 

through node Resource/Path managers. After successful reservation, node Resource/Path managers 

autonomously deploy service components and establish connectivity using reserved resources. 
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Figure 9: Architecture of resource and path management blocks. 

 

The separation of traffic of different VSNs is achieved by tunnels created and managed by ISONI 

using the IXB (ISONI eXchange Box) entities (IXB Phys. Hosts and IXB Nodes). IXBs are responsible for 

routing, encapsulation, decapsulation and virtual-physical address mapping, and also implement 

packet handling mechanisms to enable QoS enforcement. Each VSN creates a unique namespace and 

IXBs always forward packets internally based on a combination of namespace and virtual address. It 

is assumed that once a VSN has been created within the platform, it will not be possible to change its 

structure at run-time. More specifically, a decision about where and when the application service 

components are to be executed is made at reservation time; after that no changes are made 

concerning the component during run time such as migrating to another machine in case of breaking 

the SLA or finding a better resource for execution. 

3.1.2 ISONI infrastructure 

The unique feature of ISONI consists in integrating into one platform the network resource 

management and allocation functions and cloud services under the overall orchestration provided by 

Deployment Manager. In this setting, Resource Manager is responsible for the selection of 

computational and storage resources, and service encapsulation is achieved through VM. This is the 

responsibility of the execution environment that provides global resource management, allocation 

policy, and run-time SLA control. The execution environment allows to meet the requirements 

negotiated in the form of SLA including such detailed specifications as VSN-level resource 

requirements of VMs and OS environment (CPU, memory, network interfaces, dedicated devices, 

etc), and service component-level requirements as to library dependencies and software modules 

needed.  Actual implementation (execution) of computational requirements such as isolation, timing, 

persistence (save/restore resources) is realised through sophisticated mechanisms like VM CPU 

scheduling, reservation etc. in ISONI physical nodes. 

The execution of connectivity QoS requirements takes place through sophisticated packet queuing 

and filtering disciplines applied to VM traffic in IRMOS IXB routers  (see Figure 8). 

Overall, the execution capabilities of IRMOS/ISONI component correspond to those in advanced 

virtualised infrastructures with enhancements to NaaS-like capabilities. From the FUSION perspective 

they can be positioned as proprietary data centre mechanisms accessed by a FUSION zone manager. 

It must be stressed however that according to the current decision of the FUSION consortium, a light 

weight approach to connectivity layer QoS is pursued in FUSION, and potential inclusion of NaaS 

capabilities can be considered in a later phase of the project. 

3.1.3 Virtual Service Network: service description 

A central role in resource management in IRMOS/ISONI is played by Virtual Service Network (VSN) 

description being a formal specification of the requested resources needed by the application  (see 
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Figure 8). VSN is used to select and schedule resources at the ISONI domain and node level and to 

derive the admission policy for deployment of virtual machines and network links. This description 

has to be delivered by the service developer who does not need special knowledge about the 

network infrastructure. 

It takes the form of a graph in which nodes correspond to service components (realised by VM), and 

links represent network connectivity between particular components. In principle, any parameters 

that are desired by the developer and are supported by the platform can be specified to describe 

both service components and connectivity links. For example, a link between components can 

specify whether uni- or bidirectional communication takes place, bandwidth in each direction, delay, 

jitter, etc. Similarly, service component description could comply with, but is not restricted to, 

specification in the form of JSDL (Job Submission Description Language); in fact, IRMOS seems to 

have not proposed any standard notation in this respect, although it introduced network resource 

ontology for the network resource model [IRMOS11b]. 

3.2 NGSON 

Next Generation Service Oriented Network (NGSON) [NGSO11] identifies several individual 

architectural components and functionalities that are relevant for FUSION. As of today, only the 

functional architecture of NGSON has been standardized, but no interface specifications are 

available. The overall architecture of NGSON is depicted in Figure 10 [LEKA12]. In the figure, an 

exemplary flow for the signalling layer is presented (black dotted curve) in order to show how 

components of NGSON may cooperate to route client requests among multiple services under the 

orchestration of a Service Composition functional element. In particular, it is shown that Service 

Composition element controls “service routing” towards elementary services; the latter can be based 

on a per-service specification given in the form of a manifest (note that some additional information 

flows that can occur in such a case – e.g., between Service Composition and Service 

Discovery&Negotiation elements – are not shown for compactness reasons). In [LEKA12] BPEL 

(Business Process Execution Language) notation was adopted to specify such service manifests. 

 

 

Figure 10: Overall architecture of NGSON [LEKA12]. 

 

Service composition here (orchestrating the execution order)Service composition here (orchestrating the execution order)
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NGSON does not cover resource management in data centres. In principle, NGSOM can only map 

service requests to the best running service instance (through Service Routing function that uses 

Service Discovery&Negotiation function and Service Policy Decision function). Accordingly, functions 

like service atom placement are out of scope of NGSON. Thus, NGSON best corresponds to the 

service routing plane of FUSION architecture where service instances can be run in distributed data 

centres. 

Regarding network resources, NGSON adopts a classical bandwidth-broker approach to network 

resource and QoS control (through Service Policy Decision fed by the service routing – see QoS 

enforcement arrow from the Service Routing node towards the IP router). Obviously, this approach 

can in theory be adopted by FUSION, but its tight integration with the management of cloud-based 

resources (computation, storage) may rise strong scalability concerns. 

NGSON provides certain capabilities for service composition/orchestration which take the form of 

coordinating the invocation of several basic services (service atoms) in response to a single signalling 

message received from the requester. In abstract terms, the latter resembles in essence the 

operation of Initial Filter Criteria known from IMS (however, NGSON does not impose any particular 

notation of service manifest for such purposes, and one example is BPEL which has been adopted in 

a demo implementation of NGSON as reported in [LEKA12]). 

3.3 NfV 

A reference architecture of Network Function Virtualization (NFV) has  been discussed in ETSI and at 

the time of writing this report the architecture takes a form whose simplified version is depicted in 

Figure 11. For sake of comparison, the figure also proposes components that correspond to FUSION 

architecture and which are missing from original NFV architecture. The main NFV components and 

the main interfaces between them (solid lines for the latter) are represented together with some 

exemplary functions supported by these components; NFV elements of lower relevance to this 

report have been omitted. Dashed lines in the figure represent connectivity services between 

functions (services). FUSION components that are missing from the original NFV architecture are in 

particular service routing/forwarding functions and zone manager (blue blocks in color print) and 

related interfaces (dotted lines). 
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Figure 11: NVF architecture and mapping of FUSION components. 

Roughly, NFV orchestration can be mapped onto a FUSION orchestrator provided that the former is 

enhanced with additional capabilities to be able to cooperate with the service routing plane and 

possibly with the data plane (e.g., IP) routing. The zone manager function defined in FUSION features 

several capabilities not present in original NFV; recall that in FUSION there is a need to route service 

requests towards service instances – a function that has not been considered in NFV. Thus, the way 

end users connect to services is probably one of the most important differences between both 

architectures. On the other hand, zone manager could potentially inherit at least some of the 

functions pertaining to VFM (Virtual Network Function Manager). On the other hand, both NFV and 

FUSION can be positioned similarly with respect to the infrastructure with possible use of 

virtualization and the access to virtual resources mediated through interfaces such as IaaS/OCCI or 

orchestrator APIs like those available from OpenStack and Amazon AWS. 

From FUSION perspective it may be important that NFV framework allows that the services (Service / 

VNF – Virtual Network Function in the figure) are self-aware of  their needs to scale up or down with 

changing load or lack of resources and they may trigger corresponding actions themselves. Such 

actions may require specific cooperation patterns between the service (VNF), VNFM and the 

orchestrator. In FUSION, this aspect of functional responsibilities between of components still needs 

more detailed considerations. 

Last but not least, we note that with FUSION we are not (just) targeting network services (and 

corresponding VNFs) managed and deployed by the operator within its network, but we also envision 

external parties to deploy and manage QoS-sensitive services within the carrier-grade network, 

exploiting the distribution and QoS aspects that are already there. Hence the specific registration 

functions, etc. need to be exposed rather that remain hidden in operator’s OSS/BSS. Similarly, 

external parties could provide their own execution zones as computation resources, but still rely on 

the operator’s network. To this end, additional functions may be applicable in FUSION, for example 

the possibility to control data plane by service routing/forwarding elements (see respective 

interfaces to data plane elements in Figure 11). 
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3.4 Amazon AWS 

3.4.1 Amazon EC2 

Amazon EC2 is an IaaS solution with virtual servers placed on Amazon’s infrastructure in user-defined 

places according to user-specified requirements with respect to all typical parameters such as 

CPU/memory allocation, image (predefined or user-provided), storage access (local on the VM or 

virtual EBS), etc.  

Apart from that, EC2 provides many specialised types of virtual server instances, for example high 

storage instances, high I/O instances, cluster instances (high compute and high networking), GPU 

instances, and many more. 

Amazon EC2 features a long list of capabilities such as e.g. multiple locations, CloudWatch for 

instance monitoring services, Auto Scaling (enabled by CloudWatch), Elastic Load Balancing, Virtual 

Private Cloud, to mention a few. Their short description follows.  

CloudWatch is a monitoring service to gather measurements for particular server instances. Actually, 

its functionality has been followed quite closely by OpenStack’s Ceilometer so at a high level both 

products are equivalent. The measurements cover many important performance parameters related 

to running instances and thus can be used across OpenStack to serve multiple purposes that range 

from orchestration including auto scaling to billing.   

Auto Scaling enables scaling the service by adding or removing server instances in predetermined 

increments based on specified conditions (e.g., CPU load). Included is the ability to scale the service 

smoothly, that is to add/remove server instances after a configurable cool-down period, which 

makes Auto Scaling wait for a predefined time after a scaling action before it evaluates scaling 

conditions again. 

Elastic Load Balancing (ELB) allows to distribute application traffic among multiple server instances. 

The set of instances can be fixed or, in case of using Auto Scaling capability, it can be variable 

depending on predefined conditions. Load balancers can be used to face Internet or inside Virtual 

Private Clouds; they can load balance traffic within Amazon’s Availability Zone or among multiple 

zones. Load balancing can be done on TCP, SSL, HTTP and HTTPS levels. Recently, the Proxy Protocol 

option (http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt) has been provided to enable 

load balancing of any INET protocol while preserving session between a client and the server (so 

called sticky sessions). 

3.4.2 Amazon CloudFormation 

Amazon CloudFormation is an orchestration tool that allows to deploy and modify associated 

collection of resources (called a stack). It can be done using AWS Management Console, 

CloudFormation command line tools or APIs.  

CloudFormation works with so called templates, which are JSON documents that describe 

infrastructure requirements for a stack. A template contains a pattern that specifies how stack 

elements have to be orchestrated throughout a stack lifecycle. A template can contain several 

sections, some of which are listed below. 

• Parameters serve to pass values to the template at run time and can be referenced from other 

sections. 

• Mappings contain conditional values. For example, it is possible to specify a list of server image 

identifiers and assign particular image identifiers to regions where the elements of a stack can be 

instantiated based on those images.  

• Conditions control the creation of resources or the assignment of values to resource properties 

during stack creation or update. 
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• Resources have types and properties, and are elements of a stack that are to be managed by 

CloudFormation. Properties can take values in various forms, e.g., as literals, parameter 

references and even intrinsic functions to pass values that are not known until run time. 

• Outputs define information that should be sent back to the user of the template. Literal values 

and intrinsic functions can be used for passing information. 

It can be seen that templates provide a notation that allows to define quite complex service 

orchestration patterns. Noticeably, OpenStack’s Heat is another example of a similar tool compatible 

with CloudFormation. Concluding, we suggest that one of the options for FUSION could be to use an 

interface to cloud infrastructure that supports CloudFormation orchestration capabilities. This could 

relieve FUSION orchestrator from lower-level orchestration tasks while still being able to apply its 

own orchestration policies in a distributed heterogeneous inter-cloud environment. 

3.4.3 Amazon AppStream 

Amazon AppStream [APP13a] [APP13b] provides a flexible and low-latency service that offers 

resource intensive streaming applications and games from the cloud thereby enabling use cases in 

these areas that would not be possible running natively on mass-market devices. 

AppStream includes an SDK supporting streaming apps from Microsoft Windows Server 2008 R2 to 

devices running FireOS, Android, iOS, and Microsoft Windows. From the above, it is clear that 

AppStream is currently limited to:  

• Specific platforms on server and client side;  

• Although gaming is specified (where latency and jitter is of prime importance and these are 

closely related to the position of the server in the network), it is unclear what kind of gaming is 

intended; 

• The streaming between client and server is via a proprietary STX protocol (which is an Amazon 

proprietary alternative to the open standard SPICE protocol as described by RedHat). 

FUSION on the other hand targets heterogeneous cloud and support for different cloud orchestration 

layers with focus on orchestration and placement for distributed cloud computing whereby the 

execution zones are located deeper into the network in order account for latency/jitter in an optimal 

way. Additionally, FUSION intends to support composite services from an orchestration point of 

view. In this respect AppStream only relies on other AWS functions as AutoScaling and Elastic Load 

Balancer. The AppStream entitlement service offers control on the client to application connectivity 

grants (identity management).  In FUSION, this is left to the application developer. 

3.5 OpenStack 

OpenStack is a cloud management system that defines a set of interfaces that provide a full range of 

infrastructure (IaaS) services. A simplified architectural view of OpenStack is provided in Figure 12. In 

the figure, the functional blocks are shown, omitting their detailed internal structure and only 

exemplary interfaces are provided for sake of clarity of the drawing. A full description of the 

architecture can be found e.g. in [Open13]. 
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Figure 12 OpenStack architecture. 

OpenStack compute a.k.a. Nova, is a Python-based software used to orchestrate cloud and manage 

virtual machines and networks. Nova allows us to create and manage virtual servers using machine 

images. To this end OpenStack supports many popular hypervisors, e.g. KVM, QEMU, Xen, VMware. 

For example, nova-scheduler service is responsible for determining how to dispatch compute and 

volume requests among physical resources. In doing that it uses a filter scheduler to filter and weight 

tasks to optimise decisions on where a new instance should be created. Filters are selected by the 

OpenStack admin based on a set of standard classes; custom algorithms can also be implemented by 

administrators. Host weights are dynamically calculated according to predefined rules based on both 

task parameters as well as detailed data about the host itself. The message for FUSION is that the 

functionality of Nova should be in principle hidden in the execution zone behind the zone manager. 

OpenStack Object Storage a.k.a. Swift is roughly similar to Amazon S3. Swift allows to store objects in 

a massively scalable infrastructure with built-in redundancy and fail-over. It can be used to store 

static data (like images and videos), make back-ups, archive data, and so on. Swift will write copies of 

data to multiple redundant servers that are logically grouped into Zones. Zones are isolated from 

each other to safeguard from failures. One can configure Swift and decide the number of Zones and 

replicas there need to be in the system. Object is the basic storage entity in Swift. An object can be 

anything like a document, audio, or video data. A container, which is similar to buckets in S3, allows 

to organize objects by grouping them. Swift simply provides API endpoints to store and manipulate 

objects. One cannot use Swift as a file system and objects are not accessible via any file sharing 

protocols. 

OpenStack Image Service a.k.a. Glance, is responsible for storage, discovery, and retrieval of virtual 

machine images. Glance can be configured to store VM images in Object Storage, Amazon S3, or a 

simple file-system. Glance-registry and Glance-api are the two important components of Image 

Service. Glance-registry stores and retrieves metadata about images. Nova interacts with Glance 

using Glance-api for querying and retrieving actual VM images. 

Moreover, Open VSwitch defines the OpenStack Network API, which is intended to provide "network 

connectivity as a service" between devices managed by OpenStack compute service. The service is 
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based on the notion of virtual networks that effectively are virtual L2 broadcast domains. On a high 

abstraction level, such virtual domains could correspond to ISONI VSNs, but as the focus of IRMOS is 

more on services, the detailed models of its VSNs differ significantly from those of OpenStack. 

In OpenStack, a related network-level construct is Open VSwitch [http://openvswitch.org/] that is a 

NFV-like virtual switch that supports a multitude of useful features, e.g., Standard 802.1Q VLAN 

model with trunking, A subset of 802.1ag CCM link monitoring, STP (IEEE 802.1D-1998), fine-grained 

QoS control, OpenFlow protocol support, to mention a few. 

The potential role of OpenStack in the context of FUSION seems to be similar to that of Amazon 

services. As has already been noticed, both platforms share a lot in common, especially when it 

comes to orchestration capabilities (AWS CloudFormation and OS Heat). The key fact is that from the 

FUSION viewpoint, OpenStack is responsible for tasks internal to FUSION execution zone so the most 

probable position of OpenStack (and also Amazon AWS) in FUSION architecture is the data centre 

hidden behind the zone manager function. In particular, FUSION could use a set of OpenStack APIs 

for orchestration thus being isolated from the internal details of the data centre (the latter being 

comparable to the FUSION execution zone).  

3.6 Service description and orchestration  

3.6.1 TOSCA 

The OASIS consortium very recently released the a first version of a new standard on Topology and 

Orchestration Specification for Cloud Applications (TOSCA) [TOSCA13]. The main goal of this new 

standard is to be able to describe the topology of a cloud application along with their dependent 

environments, services and artefacts inside a single service template, allowing to deploy and manage 

these services across multiple cloud infrastructures. This enables better portability and management 

of cloud applications across heterogeneous cloud infrastructures, which is very relevant for FUSION 

due to its inherently heterogeneous and distributed nature of FUSION execution zones. 

The TOSCA specification defines a metamodel for defining IT services. It formalizes many of the 

interactions between a service developer delivering a service and the entity that is operating and 

deploying the service. This metamodel describes both the structure of the service in a TOSCA 

topology template as well as how to manage that service throughput its lifecycle, something that is 

described in a TOSCA plan. The main components for describing a service in TOSCA are depicted in 

Figure 13. 
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Figure 13: Structural elements of a TOSCA service template and their relations. 

A topology template captures both the node templates as well as the relationship templates 

between the nodes. The nodes and relationships are instantiations of particular node and 

relationship types, each of which define the properties as well as the operations or interfaces that 

are available for manipulating the component.  Node and relationship types can also define a set of 

requirements and capabilities regarding for example dependencies on other components or 

regarding expected capabilities of the hosting environment. 

A service template may also contain a plan describing the management aspects of service instances, 

with specific focus on service creation and termination. It relies on existing languages like BPEL or 

BPMN for describing the workflow of the service, although any process model language could be 

used. 

A deployed service is an instance of a service template. For this, a special build plan is typically used, 

which provides actual values for the various properties of the defined nodes and relationships. This 

may include concrete IP addresses for the actual service instance. 

A TOSCA service template may contain references to two kinds of artefacts, namely implementation 

artefacts as well as deployment artefacts, which contains all necessary content (scripts, application 

binaries, images, etc.) for executing or deploying the service instance in a TOSCA-aware 

environment.  

A TOSCA service template may also contain non-functional behavior or QoS via TOSCA policy 

templates and policy types, each of which may be associated with particular node templates. 

Example policy settings include monitoring behavior, payment conditions, scalability, etc.  

All information, namely the service templates, types, plans as well as the artifacts, can be combined 

in an archive format called CSAR (Cloud Service ARchive), which is a self-describing archive containing 

all definitions and models for describing the service in TOSCA.  
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Figure 14: Sample architecture of a TOSCA environment. 

Figure 14 depicts a sample architecture for a TOSCA-enabled environment. Obviously, there needs to 

be a CSAR processor that is capable of interpreting the CSAR archive and its containing content. A 

model interpreter is required in case particular process models are used for modelling service 

behaviour (e.g., via BPEL). Other key functions include an artefact manager and store for managing 

all artefacts, a deployment manager for creating a new instance based on a service template as well 

as an instance manager for service state management of all active TOSCA service instances. 

In FUSION, we will evaluate TOSCA in more detail and analyze its applicability for describing FUSION 

services. One of the potential limitations we observe at this point is that TOSCA is mainly targeting 

static service graphs that fully describe a service graph in a rather preconfigured static way.  

3.6.2 Cloudify 

Cloudify is designed to bring any application to any cloud enabling enterprises, ISVs, and managed 

service providers alike to quickly benefit from the cloud automation and elasticity. It provides 

externally managed orchestration for an application’s deployment and runtime. By treating 

infrastructure as code, it allows to describe deployment and post–deployment steps for any 

application through an external blueprint (also called a recipe). 

The steps that can be distinguished in the Cloudify approach are: 

1) Upload recipe 

Install an application with a single shell or REST command (no code changes) 

2) Create VMs 

Provision compute resources needed on demand, on the different cloud technologies using a 

“Cloud Driver”. 

3) Install agent 

Auto-install its agents (Cloudify processing components) on each VM to process the recipe. 
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4) Process recipe 

The above installed agents process the recipe and install any application tiers, which is tightly 

integrated with OpsCode's Chef. 

5) Install application services 

Deploy the application services within the cloud infrastructure. 

6) Monitoring 

Run cloud monitoring capabilities so that application services can be monitored for availability 

and performance (custom metrics can be defined and integrated). 

7) Autoscaling 

To enable elastic cloud, scaling rules based on any custom metric can be defined and instruct the 

Cloudify management layer to scale out or scale in as needed. 

3.6.3 OpenStack Heat  

Heat is a service to orchestrate multiple composite cloud applications using templates, through both 

an OpenStack-native ReST API and a CloudFormation-compatible Query API. 

Heat orchestration is currently based on Amazon web services  templates, and is currently being 

redesigned so that other formats such as TOSCA can be mapped to it. This allows for modules that 

can be implemented to translate from other formats into the native DSL. This translator can be built 

as an add-on component outside core Heat initially. Later on, a pluggable translation layer could be 

built more closely into Heat and the TOSCA translation component could be refactored as a module 

into that pluggable layer.  

Heat architecture is currently in a transitional state, which is depicted in the following architectural 

diagram. 

 

Figure 15: Architectural diagram of the HEAT-based orchestration engine 
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A Heat Template is passed via the REST API and goes to the queue (AMQP). One of the Heat Engines 

picks up the request and start processing. The Model Processor (corresponds to Parser in 1st Heat 

architecture diagram) reads the Heat Template's topology information, transforms this into the 

internal objects and derives a processing flow. Once translated into a Heat Template, the API relay 

will pass the Heat Template onto the native API. The entire component will be driving as an add-on 

component. The monitoring system posts updates to the queue (AMQP) of the Heat Engine. The 

update events are picked up by the right Heat Engine which then processes the update and acts 

accordingly.  

Heat uses an Open API and a related DSL as the common expression of an orchestration. A new 

solution pattern will be used for compatibility with alternate template formats, allowing 

implementations of various emerging cloud standards. Each may implement a Model Interpreter, 

which will expose an appropriate service API, and decompose the given template into the common 

format. Once the resulting template has been generated in the open DSL format, the common API is 

triggered by the API Relay. This is where templates will be handled in the future, such as TOSCA, and 

alternate API's such as CAMP. 

The Model Interpreter is responsible for parsing the DSL, and composing a deployment plan. It builds 

a graph of the deployment plan, and hands it off to the Heat Engine's Model Processor.  

While Heat focuses on orchestration of resources, the Task System is responsible for: 

• A sequence of tasks that have a start and an end. 

• A persistent job/process (for example an Auto-Scale policy) that remains running until manually 

terminated. 

• A job to run for a specified duration (such as running this automated stress test for 2 days, then 

exit).  

Auto-scale policies may be implemented in Heat. Ceilometer provides metrics (events triggered upon 

evaluating sensor data) from running servers and alerts that are passed to one or more user-defined 

webhooks. The MAPE (monitor, analyze, plan and execution stages) will be implemented, and the 

"A" and "P" stages will be handled by the user-defined Complex Event Processor component. 

A user-defined Complex Event Processor (CEP) can apply logic to determine what actions to take 

under various conditions, including triggering the Workflow Service, such as "add a node to this 

cluster", or orchestrations like "deploy a new cluster" or combinations of each, such as "destroy a 

failed cluster (workflow), and start up a new one (orchestration)". It may also send webhooks back 

into Ceilometer, which will be relayed to Heat, which will listen for specific scaling events in order to 

trigger ScaleUp and ScaleDown actions. The CEP is not hosted by Heat. It is provided by the user as 

an HTTP service that can accept a webhook call.  FUSION should leverage ceilometer together with a 

FUSION CEP to support heterogeneous HW and distributed data centres. 

Concerning OpenStack for federated datacentres, several blueprints (architecture proposals) are 

being discussed and proposed at the moment of writing of this document. The main issues being 

tackled are in the area of keystone (identity service) in order to enable single sign-on over federated 

datacentres. No specific architecture information about collaborating OpenStack data centres has 

been found until now. 

3.7 Light-weight virtualization 

From a system architecture point of view, lightweight virtualization, also known as OS-level 

virtualization, uses OS kernel features and exposes these via a user-level API. For the different OSes, 

different names are in use:  
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OS Virtualization 

Linux Cgroups, LXC, OpenVZ 

FreeBSD Jails 

Solaris Zones 

 

In the further description, we will use container as the generic term. Containers partition the 

resources managed by a single operating system into isolated groups, whereas full system 

virtualization completely abstracts physical environments, each running their own operating system.  

Containers have the advantage over VMs in that they are very lightweight and easier to manage, 

benefit from faster boot times making them more agile, and as terminology indicates, have an order 

of magnitude less overhead in size compared to VMs (VMs bring their own OS and virtualized 

memory space) thus significantly impacting scaling possibilities. In a real-time oriented environment 

where applications may have to be created on demand as envisioned by FUSION, these are key 

benefits. 

Containers have their own isolated process space through the use of name spaces. Inside a 

container, application code, its libraries, its data and any package manager necessary are completely 

isolated from one another thereby allowing different versions of applications, libraries and packages 

at any given time. 

Being co-located, deployed containers share underlying OS resources (e.g., page cache resources 

etc.) which, compared to VMs, allows for better re-use of OS resources.  

Security may still be an issue with some of the current implementations of light-weight containers. 

Similarly to several hypervisors, some implementations of light-weight virtualization are known to 

have possible security issues that may allow users to take control over the host OS. 

Being light-weight, the overhead of these containers are negligible, as they basically share almost all 

of the functionality and structures of the same host OS. The key downside of light-weight containers 

however is that all containers share the same OS and kernel version. In other words, it is not possible 

for different containers running on the same system to require different kernel versions. There is 

currently also no support for Windows-based containers. 

Apart from the light-weight isolation and deployment characteristics, these containers also allow for 

fine-grained resource control of compute, memory and I/O resources. 

3.7.1 LXC 

The term LXC stands for LinuX Container Tools and their main objective is to enable light-weight 

containers on any Linux kernel version and host distribution (but container and host architecture 

must match). The overall aspects are described above. Isolation is provided via Linux namespaces, 

that enable a customizable set of user, file system and network isolation. Resource control is 

provided via the Linux cgroups functionality on the level of memory, CPU, BLKIO and devices.  

The corresponding LXC tools consist mainly of:  

• liblxc tool to manage container itself (life-cycle management and state monitoring);  

• Iproute2 package to manage the network interfaces in containers. 

LXC however does not provide any orchestration, deployment, placement functionality and relies on 

other software to provide this functionality. 
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3.7.2 OpenVZ 

OpenVZ, previously called VServer, is the predecessor of LXC, introducing light-weight containers into 

a customized Linux kernel. For an introduction on the technology, see [KKVZ06]. An OpenVZ 

container can have root access, users, IP addresses, memory, processes, files, applications, system 

libraries and configuration files. Control is offered using the shell command vzctl  to manage OpenVZ 

containers and therefore is an alternative to LXC tools. Compared to LXC, OpenVZ software consists 

of an optional custom Linux kernel that improves on security, stability and other features compared 

to the mainstream Linux kernel at the expense of reducing general applicability. 

3.7.3 Docker 

The company  dotCloud uses containers for software delivery, and open-sourced Docker [DOCK13], 

the next generation of the containers engine to power a PaaS. The main intent is to commoditize 

management and deployment of LXC containers. It uses a Dockers-file (metadata description) to 

implement these goals. In Dockers, a container is a tar ball with some metadata that, through the use 

of “Copy on Write”, allowing for quick provisioning.  

Dockers allows to create and share images. Images can be authored and can be run in any 

multiplicity and any server. Images are maintained in a registry where they can be committed, 

retrieved and searched. Registries can be public or private. 

The overall concept is as follows:  

1) Select an image from registry; 

2) Build and run its associated Docker file; 

3) Production server runs the compiled Docker file and fetches container from registry; 

4) In case of network related services, load balancers are updated. 

Shipper [SHIP13] provides scriptable deployment for Docker containers. Docker itself does not 

provide orchestration functionality. The following projects are designed to support applications in 

production: 

• Flynn (https://flynn.io/) 

• Deis (http://deis.io/) 

• Coreos (http://coreos.com/) 

• Maestro(https://github.com/toscanini/maestro) 

From an execution layer point of view, Docker is part of OpenStack as a nova driver using a glance 

translator (implementing step 2 above). The Docker daemon manages the images, builds and 

containers and offers an API that is HTTP CLI based. At the moment of writing of this document, 

Dockers 0.7 has been released. Dockers 1.0 intends to handle topics such as integration with libvirt, 

qemu, KVM, OpenVZ.  

3.8 Late binding 

In this section, we provide a brief overview of existing mechanisms concerning shared memory based 

communication between collaborating VMs, whereby the structure as described in [RLZ13] is 

maintained, but focussing on the relevant sections for FUSION. 

3.8.1 Between  user space libraries and system call layer 

• IVC is a user space VM aware communication library that supports shared memory based 

communication with a socket style interface that is derived from MVAPICH2 (MPI library over  

Infiniband), and a kernel driver that is called by the user space libraries to grant the receiver VM 
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the right to access the sharing buffer allocated by the IVC library and gets the reference handles 

from Xen hypervisor. 

• VMPI for KVM only supports two types of local channels, namely one for fast MPI data transfers 

between co-resident VMs based on shared buffers accessible directly from guest OSes’ user 

spaces, and one to enable direct data copies through the hypervisor. VMPI provides a virtual 

device that supports these two types of local channel changes in kernel and VMM. 

• Nahanni (ivshmem): the host creates POSIX shared memory and qemu has to boot with ivshmem 

device information. An ivshmem_server (i.e., a shared memory server) is a user process 

implementing inter-VM notification. Currently, Nahanni only has local scope and not remote, and 

does not support migration. The shared memory on the guest is exposed in user space as a 

device, therefore a rewrite of the application is necessary to support this interface.  

3.8.2 Below system calls layer & above transport layer 

• XWAY has three parts, namely a switch, a protocol and a device driver. It is implemented with 

kernel patching and a kernel module. Conceptually, a switch layer determines co-residency and 

selects the lower layer communication & transport mechanism. A protocol layer does the actual 

data transmission using the device driver. The device driver does the effective reading/writing 

into shared memory. 

• XenVMC:  the guest OS hosts a non intrusive kernel module that uses a thin layer in layer 2. The 

solution consists of 6 parts that take care of about same functions as above (different functional 

split in components from architecture point of view).  

• socket-outsourcing is realized with a socket layer guest module, a VMM extension and a user 

level host module. The guest achieves near native OS throughput. This option has no live 

migration support. 

3.8.3 Below IP layer 

• XenSocket is a one way co-resident channel based on shared memory between two VMs that  

offers bypass of TCP/IP in case of co-residency. Two types of memory pages are used: a 

descriptor page for control information storage and buffer pages for actual data transmission. 

This technique does not support automatic co-residence detection or switching from local to 

remote. 

• XenLoop provides fast inter-VM shared memory channels for co-resident VMs based on Xen 

memory sharing facilities, resides at the layer of netfilter. It is offered as a set of 2 modules, 

namely a XenLoop guest module, implemented on top of netfilter, and a domain discovery 

module. This technique lacks remote support. 

• MMnet works with fido network. In, Fido,  three base facilities are offered: 

a) a shared memory mapping mechanism, 

b) an inter-VM synchronization signalling  mechanism , and 

c) a connection handling mechanism. 

Fido maps the entire  kernel  space  of  the  sender  VM  to  that  of  the receiver  VM  in  a  read-

only manner to avoid unnecessary data copies and to ensure security. It is designed for 

communicating between VMs that are trustable to each other, where the mapping of guest 

OSes’ memory is acceptable. 

In the scope of FUSION, orchestration and placement, the concept of co-location and the possibility 

of improving inter-service communication depending on platform and host/guest-OS capabilities as 

to improve on resource  load reduction or improved service scaling is an important benefit. At the 
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moment, capability information of services, guest-OS, host-OS, platform and topology interconnect is 

not being presented towards orchestration. Enabling the mediation of these capabilities towards 

orchestration and placement algorithms via FUSION, can leverage key benefits. 

3.9 Monitoring 

3.9.1 Amazon CloudWatch 

Amazon CloudWatch is a part of the Amazon AWS suite and provides a framework for monitoring 

cloud resources and customer applications running in the cloud. It provides log data and alarms that 

can be used internally by other AWS and retrieved in the form of graphs or programmatically by 

external applications. 

CloudWatch supports all AWS services, i.e., EC2, AutoScaling, ElasticCache, ELB, BlockStore, etc. For 

each of them, a broad range of metrics is monitored. Metrics such as CPU utilization, latency, and 

request counts are provided automatically for servers running in the AWS cloud. CloudWatch is also 

able to gather custom metrics from user applications thus extending the scope of monitored 

parameters and thus allowing for  a customized management of cloud resources. 

CloudWatch functionality is accessible via an API, command-line tools, the AWS SDK, and the AWS 

Management Console. Data access is available at 5 minutes and 1 minute time intervals. 

Amazon CloudWatch can be used for a number of purposes like billing, accounting, capacity 

planning, operational management, etc. From FUSION perspective, it offers useful capabilities to 

FUSION orchestrator and service routing, namely a rich set of metrics for services and cloud 

resources, elastic system for profiling and customizing logs and alarms, and easy access to all data, 

while still hiding the details of the execution zone from FUSION components. 

3.9.2 Ceilometer 

Ceilometer’s architecture is extensively described in [CEIL13]. A graphical representation of 

Ceilometer is depicted in Figure 16.  

 

Figure 16: Ceilometer architecture 

 

The Ceilometer component is part of OpenStack and provides a framework to collect metrics and 

events/alarms, store the information and offers an interface towards other projects. 

It provides: 

• an infrastructure to collect any information in a standardized way and irrespective of the end-

goal of the metrics, and presents this information for any other OpenStack components (e.g. 

Heat). This topic is referred to as “metering” in the OpenStack community. 

• also functionality that checks for key value variations in order to trigger various events and 

related reactions. This topic is referred to as “alarming” in the community. 

Ceilometer has three different techniques to collect data:  
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• listening: listening to events being generated in OpenStack and creating a Ceilometer sample out 

of it  

• push: have a component to push specific data of specific projects. 

• poll: actually polling APIs to obtain necessary data. 

Collected data is stored in a database generally. Multiple types of databases are supported through 

the use of different plug-ins. Through a REST API, this information is accessible to any external 

system consumers. 

The ceilometer framework provides for a multi-publisher method whereby a technical meter 

potentially reports to different consumers at different frequencies and using different transports. 

Ceilometer possibly provides input for billing, accounting, capacity planning, operational 

management, etc. 

The alarming component of Ceilometer provides, in a configurable manner, threshold evaluation of 

sampled data, which is for example used to provide auto-scaling in HEAT (for details, see [LV11]). 
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4. FUSION SERVICE SPECIFICATION 

This section discusses the key aspects regarding FUSION application services. This includes service 

composition, service description, efficient communication protocols and the initial FUSION 

application service interfaces. 

4.1 Service composition 

In FUSION, we envision supporting different types of composite services, consisting of multiple 

service atoms that are connected to each other in a service graph, and which can be deployed in a 

distributed manner across multiple execution points and execution zones. This section discusses the 

overall scope and flexibility of service composition within FUSION and how it may impact the design 

or implementation of several key FUSION functions. We start by discussing possible types of service 

composition and their impact. 

4.1.1 Service graphs: describing composite services 

A composite service in FUSION could have both a static as well as a dynamic service graph. In static 

service graphs, the service atoms and their connections are known beforehand (e.g., via the service 

manifest) and exist for the entire lifecycle of that composite service. In dynamic service graphs, the 

service atoms and their connections may vary during the lifecycle of the (dynamically changing) 

composite service. In between, we also envision service graph templates, where the service atoms 

and their potential connections are known upfront, but which may change dynamically during the 

lifecycle of the composite service. In the following sections, we will discuss the various identified 

options in more detail. In Section 4.2, we describe how such services can be described in service 

manifests. 

4.1.1.1 Variant A: Instantiating service graphs 

A pure implementation of the static deployment without any dynamic aspects may work in the 

following way. The orchestrator gets a service graph description, for example described in a 

manifest, and then calculates the optimal instantiation of this service graph as a service instance 

graph. Depending on the request it may create for example one or a given number of service graph 

instances. The main challenge of the orchestrator is to calculate the optimal mapping of the service 

instances to execution points based on given requirements, e.g., QoS requirements for given user 

locations in the network.  

 

Figure 17: Variant A, instantiating static service graphs 
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The advantages of this approach are:  

• The orchestrator has a complete picture for calculating the best mapping of the service instances 

to the execution points. 

Disadvantages are:  

• This approach in its pure form does not allow to connect new service instances to existing 

services. For example, this approach does not support connecting a newly deployed MMO client 

service (connecting to a thin user client) to an existing MMO server service instance. 

• This approach does not support that services connect to other services dynamically later. For 

example, an EPG dashboard user may choose a TV channel or a VOD movie to connect to. 

4.1.1.2 Variant B: Instantiate and integrate service graphs 

To overcome the limitations of the previous pure approach the service graph description may 

support connections to already existing services. In contrast to the purely static approach this means 

that the orchestrator needs access to the currently running service instances. 

 

Figure 18: Variant B, instantiating and integrating static service graphs 

 

 The advantages of this modified approach are:  

• The orchestrator has a full picture for calculating the best mapping of the service instances to 

execution point, knowing both the service graph of the desired new service instances plus the 

currently running services to connect to. 

• New service instances can connect to existing service instances. For example a new game client 

service instance can connect to an existing game server service instance, or a EPG dashboard 

service can connect to running VOD services. 

Disadvantages are:  

• Orchestrator does not know about future instantiation. For example when instantiating a game 

server instance the orchestrator does not know about upcoming requests of game client service 

instances, or when instantiating an EPG dashboard service it may not take into account to which 

VOD services the EPG dashboard will likely connect in the future. 
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4.1.1.3 Variant C: Stepwise instantiation and integration of service graphs 

The limitations of the previous approach can be overcome by providing the orchestrator also 

information about future instantiations. For example, the orchestrator gets a service graph 

containing both a game server service and for example four game client services, but then the 

orchestrator only instantiates the game server service alone, but taking possible future game client 

service locations into account. Then the game clients are only instantiated when needed. In other 

words, by providing the orchestrator with a service graph of the full future planned or possible 

situation beforehand, the orchestrator can optimize the mapping of a selected subset of service 

instances to execution points by taking the future instantiations into account.  

 

Figure 19: Variant C, stepwise instantiation and integration of service graphs 

 

The advantages are therefore:  

• This approach provides flexibility for optional future instantiation, e.g. the option to add another 

player for games working both with three or four players. 

• The orchestrator not only supports, but also knows about planned future instantiations. 

• There is no need to instantiate services that are not needed at the moment or that may be not 

needed in the future at all. 

However, the disadvantages are:  

• The instantiation of service graphs is restricted to a pre-defined set of service graphs. There is no 

flexibility to dynamically add any kind of service on user-demand. For example you cannot 

connect any kind of VoD server or a new game client to an EPG dashboard if this was not 

foreseen in the static service graph, or connect more game clients service instance to an running 

game server service instance. 

• The orchestrator may always lack crucial information about future instantiations. For example 

the service graph may tell the orchestration that four game client services will be likely 

instantiated and connect to the game server service instances, but the graph does not contain 

information about the time and location of the players who will connect to the game client 

service. Similarly, even if the service graph informs the orchestrator that the EPG dashboard 

service instance will possibly connect to a VOD server service in the future, it may not know 
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which VOD contains the desired movie and therefore to which VOD it will have to connect in the 

future. Therefore the orchestrator cannot make the best decision about future instantiations. 

4.1.1.4 Variant D: Instantiation of individual services 

The other extreme is a purely dynamic approach: There is no concept of service graphs. Instead, the 

orchestrator instantiates each individual service alone, taking possibly all information of all running 

service instances into account, plus the requirements of the single new service to instantiate. The 

approach is very similar to object oriented programming: each service knows to which other services 

it can connect or which other services it may want to instantiate in principle, but without restrictions 

as to whether and when such connections will be established or instantiations will be requested; this 

is similar for example to Java where a Java class knows which references to other Java objects of 

which types it supports, but without defining at compile time when and which Java classes are 

instantiated and how they are connected at run-time.  

 

Figure 20: Variant D, instantiating of individual services 

 

In practice this also means that service instantiation and establishing connections between services 

may be considered as separate steps, which may be invoked at any time at run-time separately:  
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Figure 21: Three-step dynamic service instance graph construction 

 

The advantages of this approach are:  

• This is by far the most flexible variant: there are no restrictions on the service instance graph, the 

service instance graph can be extended by new service instances, and new connections can be 

created between service instances as needed. For example, a running EPG dashboard service 

instance can connect at any time to new VOD server service instances, it can request the 

instantiation of new game server instances or game clients instances, it can create connections 

to other dashboard instances for screen sharing, etc. Some of these use cases are described in 

Deliverable D5.1. 

• The approach is very simple: just add a new instance based on the current situation. 

Disadvantages are:  

• The main disadvantage of that approach is that the orchestrator never has a global picture 

available. While the orchestrator has a complete picture of the current situation, it cannot 

consider more than one future services at once for optimal mapping to execution points. For 

example, when instantiating a game server service it cannot take into account upcoming 

instantiations of game client services. Even an optimal ordering of service instantiations can lead 

to sub-optimal results, as analysed in Section 2.8. 

4.1.1.5 Variant E: Future-looking instantiation of individual services 

The restrictions of the previous purely dynamic approach can be lifted by providing the orchestrator 

with additional information about upcoming service instantiation requests (or access to pre-

instantiated services). For example, if a game lobby software wants to instantiate a game server 

service, it may tell FUSION about all parameters required for optimal placement, for example about 

the game client services, the locations of the players to connect to and the hardware requirements 

of the game clients, see Figure 22. To avoid that FUSION has to know service specific information, a 

smart communication between the FUSION orchestrator and services may be necessary.  
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Figure 22: Variant E, future-looking instantiation of individual services 

Therefore this approach is not a pure dynamic approach as the previous one, but also has static 

elements. However, in contrast to the service graph approach, static information is stored and used 

in different ways:  

• While service graphs contain static connection information explicitly in one place (e.g., in a 

manifest), in this variant the static information is contained indirectly in the service probe 

implementations. 

• Since the information is contained in probe code instead of static descriptions, it can contain 

more information, for example proprietary hardware probing FUSION cannot know about 

current load information. 

The advantages are:  

• This approach combines the flexibility of the purely dynamic approach with advantages of the 

static approach. 
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• The orchestrator has a better picture of planned instantiations in the future (as long as it is 

known and communicated by someone, for example by the application provider or application 

itself). 

• New instantiations and connections are possible in the future on user-demand, even if they are 

not known before (e.g., connecting new game clients, new connections to VoD servers, etc.) 

The disadvantages are:  

• Due to the mixture of static and dynamic elements it is more complicated to implement than a 

purely static or dynamic approach. 

• Due to the flexibility of having service specific information stored in the probes, the 

implementation of the FUSION orchestrator and its communication with the probes may be 

more complex than just using a static manifest. 

4.1.2 Granularity 

In FUSION, we allow for flexibility regarding the granularity of individual service atoms within a 

FUSION service graph. To be able to better distribute and optimize individual service atoms across 

one or more execution zones, the composite service should be described as a set of service atoms, 

according to the need for distribution and reuse. If a FUSION service is described as one monolithic 

service, then that service obviously cannot take advantage of any distributed placement across the 

network to take full advantage of the network and compute resources. Consequently, within 

FUSION, we are looking into light-weight virtualization and  deployment models and late binding that 

allow to also efficiently deploy light-weight service atoms across one or more execution zones and 

have efficient inter-service communication when deployed in the same execution zone. 

4.1.3 Deployment strategies 

We have identified basically two deployment philosophies:  

1) Static deployment: The FUSION orchestration gets a problem description like a request of 

deploying or instantiating a set of related FUSION services, described for example by manifests, 

service graphs and parameters like the number of desired instances, distance and QoS 

requirements. Then FUSION can calculate the best graph of instantiated services on specified 

execution points. Applications using FUSION services then connect to these existing service 

instances using FUSION routing, which is basically independent from the orchestration step. Core 

properties of this approach are: 

• Developers registering services basically only have to deal with the FUSION orchestrator by 

telling the orchestrator about the new service. Software using FUSION basically only has to 

deal with the routing part of FUSION. 

• Orchestration is technically decoupled from routing in that sense that both algorithms do not 

have to work together handling a given service instance and that they are invoked at 

different times: the orchestration module of FUSION just informs the routing module of 

FUSION about the locations of all service instances, and the routing module uses that 

information to do the routing. 

• The orchestrator has the perfect view and theoretically can make the perfect decision about 

service instantiation. 

2) Dynamic deployment: basically each time a software requests a FUSION service, not only FUSION 

routing to a given service instance is invoked, but the FUSION orchestrator also decides about 

deploying and instantiating new services at the best location as necessary. Core properties of 

that approach are: 
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• Developers registering a service just upload information to a registry, but do not trigger 

orchestration or routing. When a software requests a service, then both orchestration and 

routing is activated. 

• Orchestration and routing are more closely related: routing decisions are not decoupled 

from orchestration, because a service request does not only require the intervention of 

routing, but also that of orchestration. 

• The orchestrator gets information only incrementally by each service request and never has 

the full picture. Therefore the orchestrator has to make decisions by taking assumptions and 

using available and predicted information. 

These philosophies are not mutual exclusive, but can be mixed in various different variants. The 

following sections discuss some exemplary variants.  

4.1.4 Service binding & lifecycle management 

With composite services, the individual service atoms in the service graph can be loosely or tightly 

bound to the service graph. With loose binding, we mean that the lifecycle of the service atom 

instances can be completely independent from the lifecycle of the overall composite services. This 

means that instantiating or terminating a composite service does not necessarily imply the automatic 

instantiation or termination of every individual service atom. Loosely coupled service atoms enable 

to easily reuse existing instances across multiple service graphs or composite service instances, 

dynamically linking multiple service graphs, or simply to reuse existing instances and session slots 

across multiple composite instances for higher efficiency. 

With tight binding on the other hand, the lifecycle of the individual service atoms are tightly coupled 

to the lifecycle of the composite service: due to their inherent function, the service atom instances 

have no reason for existence outside the scope of the composite service. The justification for having 

these individual atoms instead of just defining the composite service as one monolithic piece is for 

example because of the distribution of the service graph across multiple execution zones for latency 

or bandwidth reasons.  

Although we envision typically more loosely bound service graphs, where particular atoms can be 

shared among multiple composite service instances and types, FUSION should also support the more 

tightly bound composite services, in which case the lifecycles of the individual atomic service 

instances are more closely linked to each other. This has its implications on the overall domain-level 

orchestration and lifecycle management of distributed composite services, as in case of tightly bound 

service atoms, FUSION needs to keep track of the overall graph, and coordinate appropriate actions 

and state changes across multiple execution zones. In case of loosely bound service graphs, each 

atomic service instance can be managed separately, and FUSION does not need to keep track as 

much of the graph itself, but rather of the individual atomic instances. We refer to Section 4.1.6 for 

more information regarding the addressing of composite services. In the course of the project, we 

will elaborate on these options in more detail an study their implications on the overall management 

within FUSION. 

4.1.5 Distribution 

In FUSION, we do not only want to deploy multiple instances of a service type in a distributed 

manner across multiple execution zones, we also want to be able to deploy the service atoms of a 

composite service in a distributed manner, both inside an execution zone as well as across multiple 

execution zones. As discussed in the previous section, depending on the binding and role of the 

individual service atoms within a service graph, FUSION will need to orchestrate the entire service 

graph, only portions of the graph or just the individual atomic service instances. This has a significant 

impact on the overall scalability and complexity of the FUSION orchestration and lifecycle services. 
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A second key aspect related to service distribution is the networking and routing in between 

individual service instances. In case a composite service is deployed in a distributed manner, or 

constructed by connecting existing service atoms, FUSION needs to make sure that the network 

characteristics in between these distributed zones meets the overall service constraints. 

Consequently, this will play a key role in the placement or service selection operation. 

4.1.6 Addressing composite services 

Composite services by definition consist of multiple service atoms, each of which may or may not be 

directly addressable. For loosely bound service atoms that may be reused outside one specific service 

composition, FUSION should support addressing both the individual service atoms as well as the 

composite service. In case service graphs consists of tightly bound service atoms, the individual 

service atoms in many cases should not be publicly visible or addressable; instead, all service 

requests should be made using the name of the composite service. In both cases however, the 

service request for the composite services will need to be forwarded or passed through to the 

corresponding service atom that will accept and address the service request. This can be done in a 

number of ways, both of which are depicted in Figure 23: 

• One option is to allow FUSION services (service atoms in particular) to implicitly or explicitly 

inherit the name of the enclosing composite service. In case when such “renaming” is explicit, 

the service atom is aware of the alternative name, whereas in case of an implicit “renaming”, this 

can be done completely transparent from the service atom, for example by the service gateway 

function in the execution zone during service deployment. The latter case requires NAT-like 

capabilities for FUSION names, allowing to automatically translate incoming requests for 

composite service C to be translated into requests for atomic service A. In both cases, the 

original name of the service atom may still be publicly addressable or not, enabling or disabling 

direct access to the service atom, independently from the composite service. 

• Another option is to insert tiny glue services that explicitly forward the service requests for the 

composite services towards the appropriate service atom that is part of the service graph. In this 

case, it is the responsibility of the service provider for adding the necessary glue services and to 

ensure that these glue services are collocated with the service atom that is responsible for 

handling the service request. These glue services may involve some overhead, as the request 

(and perhaps also the data in a later stage) need to pass through such glue service.  

 

Figure 23: Two approaches for forwarding service requests to composite services. 
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In case the composite service only exposes a single service endpoint (meaning that each service only 

exposes a single function), the service requests should be forwarded towards the location of the 

corresponding service atom that will eventually handle these requests, both in case of the FUSION 

NAT approach as well as glue services. In the latter case, the glue service should always be collocated 

with the service atom to minimize the overhead and latency. 

FUSION services however can also have multiple endpoints (meaning that different functions 

provided by a single service may be accessed by one or more client applications or other services, for 

example using different IP addresses or ports). In this case, the situation becomes slightly more 

complex, as different endpoints may be deployed on different execution zones. This means that the 

FUSION service routers need to be able to route service requests with a similar service address but 

different ports to different execution zones. The overall mechanism is shown in Figure 24. 

 

Figure 24: Service routing for distributed composite services with multiple endpoints 
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requirement in between specific service atoms, runtime constraints for individual atoms (e.g., one 

atom requires a lot of CPU resources, another requires a lot of disk I/O), etc. The service developer 

and/or service provider needs to be able to specify this, and FUSION needs to be able to take these 

sets of constraints (both at the atomic level as well as the composite level) into account when 

deploying and managing the composite service. 

4.2 Service description 

A service manifest is a static description of a service, including all its dependencies, requirements, 

constraints, business aspects (cost, etc.), parameters, etc. It contains all functional and non-

functional requirements that are required to be able to automatically and optimally deploy and 

create instances of this service in execution zones in FUSION domains. The service manifest should 

be described in a format that is understandable by FUSION to enable fully automatic deployment and 

instantiation.  

The manifest likely consists of several parts, each of which could be provided in separate documents, 

and each of which is only relevant (or perhaps even visible) to the relevant parts of FUSION or its 

stakeholders. For example, there will be sections about deployment, how many resources to 

allocate, how to monitor, etc. Other parts of the manifest should also be made public so that other 

services, potentially from other service providers, can communicate with that service or even 

integrate that service into a more complex composite service. For example, sections that describe 

the public API of that service, including the communication API, the service functionality, etc. should 

be visible to all other services or providers who are authorised to interact with this service type. 

The service manifest can only contain the static aspects that are known in advance, and that can 

easily be described in a manifest file. In many cases however, this is insufficient or too complex. As a 

result, we also rely on the concept of evaluator services, which is a dynamic, executable version of a 

service manifest that can complement (or help interpreting) the static service manifest file. See 

Section 5.4.2.2 for more details on these evaluator services. 

Below a non-exhaustive list of categories. 

4.2.1 General information 

This section of a service description captures the basic information of a service, including its name, a 

description of what the service does, keywords, version information, etc. It can also contain 

information concerning for example the service type and statefulness. 

4.2.2 Service graph 

This section of a service description contains the key information about how services are connected 

and how they communicate. Key elements in this section include the overall composition of the 

service (is it a composite or an atomic service), the (known) dependencies with respect to other 

external (FUSION or non-FUSION) services, etc. It also contains a detailed description of all (known) 

input, output and control channels. Each control channel itself is described according to a number of 

key elements. These include the channel type (input, output or control), the service identification 

(service ID, URI, URL, etc.), a communication path description (URL), a transport protocol description 

(FUSION or other, e.g., RTSP, HTTP, etc.), a description of the data format (e.g., an MPEG-TS media 

container), and a description of the resource utilization and constraints (bandwidth, maximum 

latency, etc.) 

4.2.3 Deployment and platform dependencies 

In this section of a service description, all static/known dependencies with respect to the execution 

layer are described. This includes the software, hardware and functional dependencies. The software 

dependency section details what software packages it needs to deploy, and where to find it (possibly 
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including kernel version, etc.). The hardware dependency section describes what hardware resources 

this service may want to use. This can be either a hard constraint, or merely describing a particular 

affinity towards a particular piece of hardware, including its type, model, version, capabilities, for 

both CPU and other accelerator hardware. Third, this section may also expose dependencies 

regarding some key high-level functions this service might use. A typical example is video encoding or 

decoding, for which a particular execution zone may have specific accelerated support for. This 

section may also include specific requirements concerning each of these functions (e.g., specific 

encoding capabilities, like the codec, encoding parameters, etc.).  

Note that we don’t expect FUSION to understand all these parameters and constraints of all these 

dependencies. However, they may be key input for the evaluator services when evaluating the 

effectiveness of a particular execution zone for a particular service type. 

4.2.4 Lifecycle management 

This section of a service description includes information that can help the lifecycle manager, 

including the expected duration of the service, start/shutdown scripts, etc. 

4.2.5 Resource usage 

This section of a service description contains (a link to) information concerning the resource 

utilization of the service type. This can range from a more high-level service profile label (cfr. the 

‘m1.large’ instance type), a resource utilization profile (containing relative utilization information, 

broken down by each key hardware resource type, like CPU, memory bandwidth and footprint, disk, 

networking, GPU, etc.), towards historical monitoring data that is captured during previous 

deployments of the service type. Again, this information can be used by the evaluator service, both 

for evaluating the effectiveness of a particular execution zone as well as estimating how many 

parallel service sessions can be supported with a particular resource budget (which is related to a 

particular cost on a particular execution zone). 

4.2.6 Monitoring 

This section of a service description can contain a description of the service and resource parameters 

that should be monitored, and optionally the boundaries for each parameter within which the 

service should operate. An example service monitoring parameter is the FPS, and a possible 

boundary could be minimum 20 FPS upon which the system may need to act when the threshold is 

crossed. 

4.2.7 Mapping 

This section of a service description contains relevant information to enable service placement. This 

information can range from a static or fixed (set of) mapping location(s), to information that can help 

the dynamic evaluator service in evaluating the placement of the service in a particular execution 

zone. This can also include preferences and priorities for the orchestration to help deciding on the 

execution zone (e.g., choose the cheapest zone, or choose the zone that provides the lowest latency 

within a particular budget). 

4.2.8 Policies 

Due to the inherently dynamic nature of service deployment in FUSION, service providers registering 

new services in a FUSION domain should be able to specify in detail what the various policies are for 

that particular service type. This set of policies cover various aspects, including service deployment, 

availability, reliability and QoS, business and cost related policies, security and privacy related 

policies, etc., all of which FUSION needs to conform to and for which a service provider should be 

able to verify whether these policies are respected. 
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4.2.9 Security and privacy 

In this section, all security, privacy and visibility related aspects are described, including who can 

access what parts of the service, restrictions on the environment, etc. Things to consider here, 

include the following aspects: 

• Geographical deployment constraints 

• Legal constraints 

• Isolation constraints, which may constrain the used virtualization technique 

• Service content restriction description, e.g., an EPG may not be allowed to subscribe certain 

channels due to legal constraints in countries where the user accesses the EPG service 

Poaching is the misuse of information provided for one purpose but used for another in a way that 

harms the client. This impacts the monitoring component of FUSION. Cloud vendors may also 

perform data mining in aggregate and learn characteristics of a clients' own customers, products. 

4.2.10 Business aspects 

As FUSION will deploy many of these services dynamically and fully automated, it is crucial that a 

service provider can constrain FUSION on how, where, when and how many instances it can deploy 

at all times. This section will typically also contain a cost model, so that the service provider can 

constrain the cost for deploying its services. Again, this could be augmented with dynamic 

information from an evaluator service that evaluates and calculates the cost on-the-fly. 

The business aspects of a FUSION service deployment may relate to several aspects. A first aspect is 

regarding a billing service present in a FUSION orchestration domain. Billing has impact on resource 

consumption monitoring and reporting, which could be based on for example:  

• A flat fee per session (requires per session reporting capabilities); 

• A fixed cost for session setup, with an additional per-unit-time incremental cost; 

• The actual resource consumption of a service onto a particular platform; 

• Other possibilities 

To enable accurate billing, relevant monitoring information needs to be provided by the execution 

zones regarding the resource utilisation of each service instance. Note that in case particular 

instances are shared by many services, more complex billing schemes may be required to be 

implemented by the service provider that is providing the shared service. This may result in 

additional constraints. 

There may also be constraints with respect to the execution zone that are related to cost. This may 

be related to specific compute, storage, networking and accelerator capabilities that may exist in 

particular execution zones. 

FUSION needs to know about these business constraints deployment (e.g., to setup monitoring in 

order to have correct input for billing, or to constrain the deployment across execution zones). 

Therefore, these business constraints must also be described in the service manifest and possibly 

partially also in the evaluator services. The manifest of a service could specify instructions on how 

the monitoring and billing should be configured. 

Concerning licensing issues associated with a service, we assume this is the responsibility of the 

services to ensure all licensing is ensured. This may however also result in additional deployment 

constraints, for example with respect to the countries in which a service may be deployed. 
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4.3 Service sessions 

In this section, we will elaborate on the concept of a FUSION service session and FUSION session slots 

as a key enabler for efficiently handling many of the key functions of FUSION with respect to the 

resource utilisation of service instances. 

Each service instance can typically handle a particular number of service requests in parallel. We 

define a FUSION service session as the period of time in which a (set of) communication channel(s) 

exists between a client and the service instance that handles the service request. Note that a service 

request could consist of multiple messages going back and forth between the client and the session 

instance. Note also that a FUSION session should not be confused with an application session, which 

may comprise one or more independent FUSION service sessions. Each FUSION session involved in 

the application session can be considered independent from the other sessions and thus could be 

handled by different service instances. Similarly to HTTP requests, the FUSION sessions could be 

linked at the application level by using a cookie or session identifier.  

When a new service request is issued by a client (or another service), the service routers need to 

decide very quickly to what service instance to route that particular request. For this, it needs to take 

into account many factors, including the overall load of a particular service instance. Indeed, it is not 

useful to route a service request to a service instance that is already fully loaded, as this could have 

detrimental impact on all service sessions that it is already handling. However, for many reasons, 

including scalability and privacy, it may not be practical and probably also not feasible to send high-

level or low-level resource utilization data from an execution zone to the domain-level service 

routers or orchestration. 

To solve this issue, we propose the concept of FUSION session slots. The core idea is that during 

service instantiation, each service instance allocates enough resources for handling roughly N 

FUSION sessions in parallel. We thus say that the service instance has N available session slots.  Each 

time a service instance is handling a service session, it takes up one of the available session slots for 

the duration of the session. This information (i.e., actual, average or predicated availability count) 

needs to be forwarded and distributed towards the domain-level service routers, which can use this 

information when forwarding a new service request towards a particular instance. Note that if during 

execution it seems that the actual resource utilization does not match the predicted resource 

utilization, then the available session slots could easily be updated on-the-fly using the same 

mechanism. 

Session slots will be used in the service routing plane as an additional metric to be combined with 

network metrics for determining the most appropriate execution zone to forward service requests 

towards. Routing trade-offs between maximising network performance (in terms of delay, 

throughput, etc.) and available service processing resources (in terms of available session slots) may 

vary depending on service type, including the longevity of the service sessions. Approaches for 

handling these trade-offs as part of multi-metric routing decisions as well as techniques for efficiently 

dealing with routing decisions per service type are being developed as part of the anycast routing 

algorithms and protocols being studied in WP4, to be reported in deliverable D4.2. 

4.3.1 Service Session Implementation 

Two key aspects with the concept of session slots are (i) that during the resource allocation step 

when instantiating a new service instance, the amount of allocated resources need to be linked 

explicitly with a particular number of session slots, and (ii) that the number of available session slots 

needs to be monitored and distributed towards the domain-level service routers on a regular basis. 

To avoid flooding of these session slot update messages across the domain-level overlay network (for 

example in case of short-lived sessions), average numbers or even predicted availability numbers 

could be distributed, rather than an accurate actual figure, which may be already outdated when it 

reaches the closest service router. 
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To keep track of the service session a particular client is connected to, a FUSION session identifier 

could be generated and associated with every new service request. Although the session identifier is 

probably not relevant for the service routing itself, it may be relevant for the service instance, to 

know what service session your service request belongs to, for example when linking multiple client 

requests to the same FUSION session. Remember that a FUSION session is different from an 

application session. 

4.3.2 Benefits 

The concept of service sessions and the corresponding session slots is applicable both for request-

response type of services as well as streaming services, though their behaviour might be quite 

different. With the former type of services, service sessions could often be very short-lived, whereas 

with the streaming services, service sessions will typically last for several minutes, hours or even 

days. To manage these long-lived service sessions, service factories could be used, although this 

should be invisible from FUSION. FUSION could provide some API support however to restrict the 

amount of resources per session in a light-weight fashion. 

Although this approach still needs to be worked out in detail, the notion of service sessions and 

session slots could significantly simplify many of the core FUSION operations, which is discussed in 

the following sections. 

4.3.2.1 Light-weight service request routing 

With this approach, service routers only need to be aware of the number of remaining available 

parallel sessions that each service instance still can handle, which boils down to a single value per 

instance. This information would be almost the only monitoring information coming from the 

execution zones that need to be broadcasted towards the domain-level service routers, making it 

very simple, concrete, and manageable. 

4.3.2.2 Separation of resource allocation and service request routing 

In this approach, the resource allocation is done upfront during service instantiation, which is 

coordinated by the orchestration layer. During service routing, the service routers do not have to 

take into account the available resources of each zone, the requirements of each service type, etc. 

This makes the service routers much faster and simpler. The major disadvantage of this approach 

however, is that the average amount of session slots that a service instance can provide for a 

particular amount of resources needs to be more or less predictable. In worst case however, a 

service instance could always start with a conservative estimation, and dynamically update this 

estimate along the way (for example, when the service instance detects that the current active 

sessions only use a portion of their estimated or assigned resources).   

4.3.2.3 Hierarchical aggregation 

The approach also allows to aggregate the available resources very easily at multiple levels: you just 

add them all up per unique service type. For example, if a zone has multiple instances of the same 

identical service, each supporting a particular number of sessions, then you can just add up each of 

their remaining available parallel sessions and present this aggregate number to the domain. The 

domain and the service routers do not even have to know that the available session slots come from 

multiple service instances within a particular zone. Even inside the overlay network of a (large) 

domain, service routers do not have to keep track of every single number from every single zone. 

Instead, for each link to another service router, they could keep track of the number of the number 

of available slots that are within range when forwarding the request along that link. In the inter-

domain case, a domain could choose to only make a subset of all available session slots 

visible/accessible to another domain, for only a subset of all service types. 
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4.3.2.4 Service-type neutral 

As already discussed above, the concept works both for request-response as well as streaming 

services. The former type of service typically will be able to handle a large amount of parallel sessions 

with moderate resources, whereas the latter service type will typically only be able to handle a few 

sessions in parallel. Another key difference is the potential frequency with which the session slots are 

(de)allocated, as streaming services will likely be much longer-lived than request-response services. 

See the next section how this can be taken into account. 

4.3.2.5 Stability 

Service routers probably should implicitly or explicitly be aware of the duration and demand of each 

service session, to be able to estimate how accurate the number of available session slots is when an 

update reaches that service router. For example, it could keep track of the moving average and 

variance to estimate the probability that a particular service instance will still have available sessions 

when the request is forwarded to that instance. Indeed, the routers will typically always have 

outdated information, as in many cases, many requests can occur in parallel, each coming from 

different routers that are unaware of each other’s choices. During periods of stability (i.e., low 

variance), it may be possible to use all available session slots. During periods of instability (i.e., high 

variance and low predictability), it might be better to choose a zone that has more available session 

slots available for that service type, rather than trying to use the last remaining session of the closest 

zone, as the session slot might already be taken by the time the request reaches the instance. 

4.3.2.6 Auto-scaling 

The decision of whether and when to request FUSION orchestration to start a new instance of a 

particular type also becomes easier, as one can simply keep track of the evolution and/or history of 

the available sessions (across the domain) and proactively start and/or stop new instances or even 

request particular service instances to increase or decrease their available session slots. In other 

words, the concept of session slots is a very simple metric to scale-up or scale-down the available 

session slots and service instances. 

4.3.2.7 Billing 

Formalizing the resource allocation and making it an explicit step upfront makes it easier to setup up 

appropriate billing, where the service provider knows how much he will have to pay for running the 

service instance. This is also applicable in case the service instance (or another service instance that 

monitors the instance) can request for more or less resources: by making the resource (re)allocation 

explicit, it becomes more transparent and easier to manage. If the routers would have the (sole) 

capability to decide to what instance to forward the request, this might lead to an aggressive over-

allocation strategy, or prevent the application developer to have control on the resource utilization 

(and eventually the bill). 

4.3.2.8 Trust 

Another key benefit of this approach is that a zone never has to publish its available resources to the 

domain for handling the requests to other zones or domains to other domains. Instead, it can just 

broadcast for each public service how many sessions the zone or domain can provide, which could be 

a smaller number than in reality, for example triggered by SLA agreements.  

4.3.3 Issues for further investigation 

Although the concept of FUSION service sessions and session slots simplifies and solves a number of 

key issues, there are still a number of aspects which have to be solved based on further investigation 

and feedback from prototypes and first implementations.  
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• Service instances, execution zones or a domain can at all times announce more available session 

slots than it can handle. This can be either a deliberate oversubscription strategy or also simply 

caused by the fact that the service has no complete and accurate view of the system it is 

deployed on, the interference caused by other applications, a partial or inaccurate view of the 

required resources per session. Though the root cause is different and thus the countermeasures 

may be slightly different, this issue is similar to the issue of obsolete FUSION routing tables. An 

example countermeasure might be to avoid "ghost" sessions slots from a particular service type 

from a particular execution zone or even domain. 

• Another issue is who is responsible for determining the amount of sessions that a particular 

service type can provide for a particular amount of resources. There are a number of options. 

One option is to start with a particular amount of resources, for example captured by a resource 

profile (like many cloud providers do), and to associate a number of session slots with each 

profile. Another option is to start from a number of session slots and request a particular amount 

of resources accordingly. The advantage of the former option is that is simplifies resource 

allocation in the execution zones, as well as for the service types, which can determine the 

average number of session slots with each profile offline or online via monitoring and profiling. 

However, is does restrict overall flexibility. The latter option on the other hand provides optimal 

flexibility, however at the expense of more complex resource management inside the execution 

zones, as well as most likely more complex resource estimation for each service type. 

• As with all cloud infrastructures, it is hard to estimate in advance what the interference of one 

type of application will be on another when they are co-located on the same physical 

infrastructure. This may impact the effective amount of session slots that can be hosted by a 

service instance with a particular set of resources. The application or an external load balancer 

could keep track of this by taking into account overall load and application health, and adjust the 

available session slots accordingly.  

• More in general, there is the fundamental dilemma of who is responsible in case a particular 

performance target is not met. This question is related to whether FUSION (or any cloud 

provider) will ever be able to provide performance guarantees beyond best effort to the 

applications it is hosting. For example, via profiling, a particular service type expects to be able to 

run N sessions in parallel with a particular resource profile. However, when the instance is 

deployed inside a particular execution zone, only a fraction of these sessions can be achieved. Is 

this caused by the execution zone provider that is oversubscribing its resources too aggressively, 

is this accidentally due to an extreme interference between two random applications deployed 

on the same physical infrastructure, or is this because the application has an inaccurate view of 

the effectively required resources? If it is the responsibility of the execution zone to allocate 

enough resources for a particular application, then what prevents the application from lying 

about its internal health status in order to get more resources allocated to itself at the same 

cost? 

• What entities are responsible for triggering such updates implicitly or explicitly? Does the service 

instance need to call a FUSION API function to inform the execution zone of a decreasing or 

increasing amount of available session slots, or can this be managed semi-automatically by an 

external load balancer that estimates the available session slots for a particular service instance 

based on monitoring information?  

• How frequently does the available session slot information need to be updated in the overlay 

network, and what components are responsible for this? As there may be many service instances 

of many service types scattered across many execution zones and domains, there needs to be a 

good balance between accuracy and flooding. This needs to be studied, and may result into some 

interesting (potentially self-adapting) algorithms. 
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• How to cope with many small service instances that typically only have a few available session 

slots available and that are distributed across zones and domains? How to prevent service 

routers to have to keep too much state, which is probably outdated anyhow? 

• How to aggregate these available session slot counts in the overlay network without causing 

routing loops or double-counting? Perhaps it should also contain logical geo-information, or 

there needs to be a mechanism for uniquely identifying session slots without causing too much 

overhead. 

• In general, what extra information is required to be distributed and/or stored inside the service 

routers, next to the available session slots per service type? This includes information for 

providing stability, preventing double counting and routing loops, service type parameterization, 

etc. 

Most of these issues are no fundamental challenges, but often more related to implementation 

details requiring additional practical experiences and feedback from prototype implementations of 

FUSION features and the demonstrators. Therefore these issues will be addressed along the way 

when implementing FUSION and the demonstrators. 

4.4 Inter-service communication and late binding 

Due to the distributed nature of services, communication is inherently present between these 

services. Depending on the hosting platform and environment and its available communication 

interfaces, several interconnect options may become available.  

In the simplest case the communication channel is chosen at design time (e.g. a TCP socket). Any 

other possible communication paths are not considered due to absence of knowledge about 

available communication paths. Therefore, the design time chosen communication channel can be 

sub-optimal compared to possible communication channels available on the hosting platform. The 

presence of specific adapter related technologies such as RDMA over Converged Ethernet (RoCE), 

Infiniband extend the portfolio of available possibilities. Choice of an optimal communication 

channel at deployment time can leverage an important benefit. 

Due to the nature of FUSION with distributed execution zones and execution domains, two 

communicating services may have been deployed on the same (physical or virtual) machine or 

another, either inside the same execution zone or across multiple execution zones.  

Moreover, in case of physically distributed services, it may be necessary to add one or more 

transformation functions, for example to save bandwidth (H.264 encoding) or to increase overall 

security (SSL encryption) at the expense of increased compute resources and additional end-to-end 

latency but on an overall increased efficiency and capacity. 

Even at the application level itself, more optimal communication channels could be provided. One 

example is the efficient sharing of GPU buffer pointers across multiple service instances running on 

the same machine to avoid expensive copying and wasting huge amounts of bandwidth. As this is a 

very dedicated protocol, it is impossible for FUSION to support this out-of-the-box.  

However, FUSION should make it easy for services to detect these scenarios and deploy their own 

communication mechanisms via custom libraries in a reliable and secure way. 

As a result, FUSION should support a late binding mechanism for services, to enable to use an 

optimized communication channel, based on the chosen service placement distribution and physical 

mapping. FUSION should allow services to implement their own communication channels, to be able 

to support custom and dedicated communication mechanisms.  

Late binding from orchestration point of view can be realized from different angles, of which we 

describe two possible options: 
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• Have orchestration perform the late-binding for the application so that at design time 

communication channels are available and try to optimize application placement using this 

knowledge; 

• Allow an application or some intermediate layer to learn about available communication 

channels when an application is deployed and select the communication channel at 

placement/deploy time, for example using the evaluator services in combination with 

appropriate FUSION APIs. 

 

From the above, selecting the ‘optimal’ communication path depends on two factors: 

• placement algorithms 

• knowledge of physical topology onto which the interconnected distributed service is deployed, 

together with the communication mechanism that is used. 

In the second year of the project, we will work out the details, possible strategies as well as the 

mechanics in more detail, and define the benefits and constraints with respect to lately bound 

communication protocols in between related services. We will also implement several of these 

strategies within the scope of the demonstrator setups. 

4.5 Service management interface 

In this section, we discuss the initial key FUSION external interfaces for managing the services as well 

as internal interfaces for FUSION services to efficiently communicate and interact with other FUSION 

components. These interfaces can be divided into four key interfaces, as depicted in Figure 25: 

• A lifecycle management interface 

• An inter-service interface 

• A data centre and resource management interface 

• A FUSION routing and networking interface  



D3.1 Initial Spec. of algorithms & protocols for service-oriented network mgmt Page 71 of 146
 

Copyright © FUSION Consortium, January 2014 

 

Figure 25: Service management interfaces. 

 

Note that in FUSION, we envision that services can also be FUSION-agnostic, meaning that services 

do not have to be aware that they are being managed by FUSION. This enables legacy services to be 

deployed into FUSION. This can be accomplished for example by creating simple FUSION-aware 

wrappers that convert FUSION agnostic services into FUSION services. In the following sections, we 

will discuss each of these interfaces in more detail. Note that these (and the next) interfaces 

represent an initial set of envisioned interfaces. During the project, we will update and validate them 

as the design is being refined and based on input of the demonstrators. 

4.5.1 Lifecycle management interface 

This interface contains an initial set of key functions to control the lifecycle and overall health of a 

FUSION service, including functions to start and stop a FUSION service and for requesting overall 

monitoring information. 
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Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONServiceStart (zone manager ���� FUSION service) 

BEHAVIOR 

This function triggers the FUSION service to start running and start accepting service requests. This 

function could be implemented by a script that will start a (set of) application(s) with specific 

parameters. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceParameters Blob Instantiation parameters for the service instance 

MaxSessions Int Number of session slots to prepare 

RETURN VALUES 

Name Type Description 

Status Int Returns whether the request was successful or not, or is pending 

 

Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONServiceStop (zone manager ���� FUSION service) 

BEHAVIOR 

This function triggers the FUSION service to stop all sessions and shut down. 

PROPERTIES & PARAMETERS 

Name Type Description 

Timeout Time Maximum amount of time stopping the service sessions 

RETURN VALUES 

Name Type Description 

Status Int Returns the status for stopping the service 
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Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONServiceGetAvailableSessions (zone manager ���� FUSION service) 

BEHAVIOR 

This function requests the current number of available session slots. 

PROPERTIES & PARAMETERS 

Name Type Description 

   

RETURN VALUES 

Name Type Description 

AvailableSessions Int The currently available number of session slots 

 

 

Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONServiceModifySessions (zone manager ���� FUSION service) 

BEHAVIOR 

This function requests the service instance to change the number of available sessions. 

PROPERTIES & PARAMETERS 

Name Type Description 

MaxSessions Int The new maximum number of session slots 

RETURN VALUES 

Name Type Description 

Status Int Returns the status code 
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Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONServiceGetInformation (zone manager ���� FUSION service) 

BEHAVIOR 

Request the service instance to return health or monitoring information for a specific subset of 

categories. This could be service-specific monitoring information, or more general service 

information. 

PROPERTIES & PARAMETERS 

Name Type Description 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Information Structured The requested information, in a particular format. 

4.5.2 Inter-service interface 

Due to the communication intensive nature that many FUSION services will have, we plan to support 

optimized communication protocols using late binding for setting up low-overhead and/or high-

bandwidth links between FUSION services. It is up to the execution zones to decide what late binding 

protocols they will support and provide to the services. It is important to note that these functions 

assume that the services involved in the inter-service communication have already been located, for 

example using the FUSION routing plane, but want to enable more efficient data-plane 

communication in between these instances. 
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Inter-Service Interface 

FUNCTION NAME 

FUSIONServiceBind (FUSION service ���� FUSION service) 

BEHAVIOR 

This is the key function for doing the late binding in between different services 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName URI Name of the other service to connect 

BindType Enum What communication protocol to use for binding to that service 

(could be automatic) 

BindParams Structured More details concerning the type of communication 

RETURN VALUES 

Name Type Description 

Status Int Return code for the request 

Socket Socket An optimized FUSION socket connection, implementing an 

advanced communication protocol (e.g., shared memory across 

VMs) 

 

4.5.3 Resource management interface 

Because of the compute-intensive nature of FUSION services, these services may require specialized 

hardware. Via the interfaces below, FUSION services or evaluator services can query and request for 

(the availability of) specific hardware resources. As with the late binding protocol, it is up to the 

execution zone whether they want to support this interface or not.  
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Resource Management Interface 

FUNCTION NAME 

FUSIONServiceQueryResources (FUSION service ���� zone manager DC mgmt) 

BEHAVIOR 

Query the execution environment for the existence of specific hardware resources. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName URI Name of the service 

DeployParameters Blob Deployment parameters for the service 

Timeout Time Maximum amount of time for making the evaluation 

RETURN VALUES 

Name Type Description 

Score KeyValueList The multidimensional score 

 

Resource Management Interface 

FUNCTION NAME 

FUSIONServiceRequestResource (FUSION service ���� zone manager DC mgmt) 

BEHAVIOR 

Requests a specific resource or accelerator to be allocated and bound (dynamically) to the service. 

PROPERTIES & PARAMETERS 

Name Type Description 

ResourceType String Name of the resource 

ResourceParams Complex More details about how much resources are requested 

RETURN VALUES 

Name Type Description 

Status Int Return code 

ResourceHandle Handle A handle to the resource 

 

4.5.4 Routing and networking interface 

The routing and networking interface covers incoming service requests and data-plane 

communications from users invoking the service and, in the case of composite services distributed 

over multiple execution zones, either incoming or outgoing service requests and data plane 

communications from/to service instances in remote execution zones. This interface and the 

associated protocols are part of the service networking work specified in deliverable D4.1. 
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5. DISTRIBUTED SERVICE ORCHESTRATION 

In this section, we will discuss in detail the key FUSION domain-level orchestration functions for 

managing service instances across a distributed set of execution zones.  

5.1 Functional design  

A FUSION domain is managed by an orchestration layer comprising several key functions for 

managing both the services as well as the execution resources. This section will provide details on 

the overall design decisions as well as the key functional blocks for implementing these functions. In 

this discussion, we will assume a single logical orchestrator per domain, although obviously, for 

scalability reasons, each function could be implemented in a distributed way by multiple entities. 

5.1.1 Overall design decisions 

For the design of the FUSION domain-level orchestrator, we envision the orchestrator to consist of a 

modular set of functional components, each of which allowed to be a (FUSION) service on its own. 

Each orchestration function is a service that may have multiple instances that can be deployed on 

one or more execution zones within the orchestration domain (though this is not a key requirement, 

see section 5.3 on lifecycle management of the FUSION orchestration functions).  

For the communication protocol in between the various orchestration services, we will use a set of 

RESTful APIs. In the future, we may even envision an OpenStack compatible API on top of a FUSION 

orchestration zone for managing and deploying services in FUSION, including necessary hooks and 

support for efficient deployment of FUSION services within a heterogeneous data centre.  

5.1.2 High-level design 

Figure 26 depicts a high-level view of the key FUSION domain orchestration functions and their key 

interactions. For clarity, we did not draw any arrows between the various functional blocks and the 

security block. The dotted lines represent public interfaces, whereas the solid lines represent internal 

interfaces in between various orchestration services. In this section, we give a brief overview of the 

key functions and their key role in the overall orchestration. Each function will then be discussed in 

more detail in separate sections. 

  

Figure 26: High-level design of a FUSION domain orchestrator 
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• Dashboard 

At the top, we envision a FUSION dashboard web service acting as a graphical frontend for 

managing a FUSION domain, registering and deploying FUSION services, billing, etc. This 

dashboard internally interacts with the various orchestration functions via their respective APIs.  

• Security 

This component is responsible for all authentication and authorization functionality whenever a 

particular orchestration API is used. Whenever an unauthorized request is made to one of the 

orchestration components, they should be automatically forwarded towards the security 

component, which will enforce service authentication, and which will ultimately also decide 

whether a particular user of a component is authorized to make this request. This component 

will also contain all domain-level policies.  

• Accounting & billing 

The FUSION orchestrator needs to ensure that all entities are being billed and paid appropriately 

according to provided or consumed resources and offered services.  

• Service registration 

A key orchestration function is the service registration function, which will handle all 

registrations of new service types, updates with respect to their deployment parameters, and 

ultimately decommissioning of a particular service in the FUSION domain. Registering a new 

service may involve a subsequent automatic deployment of a number of instances within the 

orchestration domain, as described in the service manifest. 

• Resource registration 

Execution zones, service routers and other resources also need be registered to or unregistered 

from the domain orchestrator. This enables the orchestration domain to grow or shrink 

dynamically, and also enables execution zones or routing domains from external parties to be 

attached to a particular orchestration domain. A domain orchestrator may for example also 

decide to create temporary execution zones on remote locations (e.g., on Amazon EC2) and 

attach them to its orchestration domain to handle unexpected peak loads. 

• Service deployment 

Another key function is the service deployment function. This function is responsible for 

interacting with the zone manager of an execution zone for deploying new instances in that 

execution zone. This involves executing and coordinating the 4-step placement strategy 

discussed in Section 5.4.2.1. Service instances can also be deployed directly by authorized 

entities, possibly on targeted locations. The load balancer may also directly instruct the service 

deployment function to start deploying new instances in particular zones based on (changing) 

predicted demands, prices, etc. 

• Load balancing and placement 

The load balancer and placement function has multiple purposes. First, it is responsible for 

guaranteeing proper QoS by making sure the load of all service instances is on par with what 

was requested by the service provider; for example through an SLA. This includes taking into 

account load forecasting or load patterns provided by a service provider. Next, the placement 

function contains the inter-zone placement algorithms for optimally deploying all service 

instances across all available execution zones, taking into account the announced available 

resources from each execution zone, and the existing and predicted execution requirements 

from all current and future service instances deployed within the orchestration domain. 

• Domain monitoring 
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The monitoring block is responsible for aggregating and analyzing all available monitoring 

information coming from the execution zones, the service instances, the service routers and the 

network. This component provides essential input towards many other orchestration functions, 

like the load balancer and placement component, the accounting and billing component for 

processing the resource utilization per service instance and per execution zone. It also provides 

health and status information towards the domain orchestrator and the service providers 

regarding the overall operation of the domain and the individual services. 

• Inter-domain orchestration 

To handle inter-orchestration communication and deployments, we envision a dedicated 

component that will interface with the other orchestration domains and that will make sure that 

all security issues and other requirements and agreements are met. Most likely, only limited 

information regarding service instances and resource availability will be shared with the peer 

orchestration domains. In case one orchestration domain exposes itself as an execution zone 

towards another orchestration domain, this block (or an extension) could also implement all 

necessary interfaces for an execution zone. 

• Service routing  

In case the domain orchestrator controls and manages the underlying routing domain, this 

component is responsible for programming and managing all service routers, configure their 

FIBs, etc. 

 

5.2 Key FUSION orchestration actors 

Many different entities will need to interact with different aspects and functions of a FUSION 

orchestration domain. Each entity will typically only have access towards a subset of all functions and 

data available in that domain. Below an overview of some of the key entities and roles we envision 

that need direct access to particular FUSION orchestration functions. Note that these entities can 

involve either physical persons as well as software components. 

• FUSION orchestration domain admin  

This entity is responsible for managing an orchestration domain. Its key role is to ensure proper 

operation of the entire orchestration domain. This means ensuring the orchestration services 

are up and running, doing overall management, accounting and billing, ensuring the necessary 

security policies are in place and are operational, and ensuring proper provisioning of resources 

(e.g., execution zones, service routers, network infrastructure, etc.) with respect to the 

deployed services to ensure all services can run properly in a healthy stable environment. 

• FUSION execution zone admin 

This entity is responsible for managing an execution zone. This involves registering the available 

resources towards the orchestration domain, ensuring proper communication between the 

orchestration domain and the execution zone, enforcing all necessary policies dictated by the 

orchestration domain, as well as installing all appropriate policies of the execution zone with 

respect to the orchestration domain, etc. 

• FUSION network domain admin 

This entity is responsible for managing the FUSION overlay network for routing FUSION service 

requests. The FUSION orchestration domain at the very least needs to be aware of some 

network health information coming from the network domain in order to appropriately balance 

and deploy services across the orchestration domain. In case the orchestration domain is also 

responsible for managing several aspects of the FUSION routing domain, this entity is also 
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responsible for ensuring proper communication and execution of all requests coming from the 

orchestration domain. 

• FUSION service provider 

This entity is responsible for registering and managing new service types within a FUSION 

domain. Some of its other key functions are to monitor the overall operation of its services 

within an orchestration domain. This includes monitoring the overall health of the services, the 

billing, as well as the set of policies that were enforced for each individual service. 

• Zone manager 

The zone manager is the software component that will actually manage all communications 

between an execution zone and the FUSION domain orchestration. This includes service 

deployment, service monitoring, etc. These functions are described in detail later.  

• Service router 

The service routers should forward relevant information towards the orchestration domain so 

that the latter can properly deploy and balance FUSION services across an execution domain. In 

case the orchestration domain also controls the networking domain, the orchestration domain 

needs to be able to manage the forwarding tables and/or service routing policies within these 

service routers. 

5.3 Lifecycle management of the FUSION orchestration services 

All these FUSION domain-level orchestration services also need to be hosted and managed 

somewhere in the network. We are currently assuming and exploring two main operational models. 

In the first model, the FUSION orchestration services are deployed on a non-FUSION infrastructure, 

which could be located inside or outside the geographical area that spans the FUSION orchestration 

domain. In this model, the orchestration services are managed externally and need to be made 

compliant with the underlying service management platform, which could have its own dedicated 

APIs, or which could use standard APIs (e.g., EC2, OpenStack API). In this case, there is a clear 

distinction between FUSION orchestration services and FUSION application services. 

In the second model, all FUSION orchestration services are actually FUSION-compatible services 

themselves, which are deployed on FUSION execution zones and managed by the zone managers. 

This approach has a number of advantages. First, it results in a very symmetric model, where FUSION 

orchestration services are treated the same way as regular application services. This also means that 

the requirements for the orchestration services  can be expressed in the same language as regular 

FUSION services. Second, as these services are running in one or more execution zones, the same 

physical infrastructure can be reused and managed via one common interface (i.e., the zone 

manager). One potential issue however is that it may complicate the order in which to bootstrap a 

FUSION orchestration domain and its initial execution zones: there needs to be at least one 

execution zone already up-and-running, on which an orchestration domain is deployed. This could be 

handled by incorporating a special function inside the zone manager to automatically deploy 

particular orchestration services inside its execution zone and automatically registering itself to that 

orchestration domain. 

5.4 Key functions 

In this section, we provide a detailed view of each key orchestration function.  

5.4.1 Service registration 

Any new service first needs to be registered to a FUSION domain before it can be deployed and 

instantiated in that FUSION domain. This can be either an application service or a FUSION core 
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service. In case of application services, the service registration is typically triggered by the application 

provider that wants to deploy and start instances of the new service in that FUSION domain.  

The service registration is handled by a FUSION domain registrar service, and involves sending (an 

URL of) a service manifest to the registrar. A link to the required software packages can be provided 

in the manifest. These software packages can be stored by FUSION in a repository. The registrar can 

accept or decline the registration. If the registration succeeds, a unique service identifier is 

generated and returned to the service provider, which can use this service identifier to refer to that 

newly created unique service type. 

A possible sequence diagram is depicted in Figure 27. In this diagram, a service provider registers a 

new service, which is stored in a repository. This repository may as part of the registration start 

fetching the software packages and other information. Upon success, the service provider is returned 

a unique service identifier, which the service provider can then use when identifying the service 

when making a service request. In parallel, the domain orchestration may start analyzing the 

manifest and start pre-deploying  instances across execution zones in the FUSION orchestration 

domain. 

 

Figure 27: Sequence diagram for service registration and optional initial predeployment 

 

The registrar can at any times be queried to search for particular service types, in which case all 

service types you are authorised to query for will be returned. The querying could be done based on 

name, keywords, functionality, etc., and could be provided by a dedicated (optional) FUSION core 

service. 

5.4.2 Service placement 

Service placement or service mapping is the act of selecting Execution Zones that will advertise 

service availability to the service routers. Service placement is closely related with resource 

monitoring and service deployment, as services should only be mapped onto execution zones or 

hosts with enough available and appropriate resources (see also Section 5.4.2.3 on execution zone 

resource allocation). The input for the service placement operation consists of a number of 

constraints coming from multiple sources, including the service manifest, zone resource availability, 

cost constraints with zone providers, current and forecasted user demand, etc. The output of the 

operation is the set of execution zones that subsequently will advertise the service through the 

service routing function. 

In some scenarios, extremely service-specific requirements must be taken into account during 

service placement. To keep the FUSION orchestration layer scalable, these specific requirements 

must be abstracted to the orchestration layer and the involved service must aid in the placement 

process. Notable examples are GPU features like shader models and available GPU memory. On the 
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one hand, these parameters are too detailed for evaluation at the orchestration layer. On the other 

hand, it is unlikely that zones will advertise this to the orchestration layer. Hence, we need to deploy 

evaluator services to support the service placement. 

Therefore we plan two different roles working together via the FUSION API: 

• FUSION has the master control over evaluating different possible locations. 

• Service-specific service evaluators help FUSION by scoring possible locations based on service-

specific criteria. 

A software requesting a service instance from FUSION should be able to pass service-specific 

description parameters, which are not understood by FUSION, but handed over to corresponding 

service evaluators that understand the description. FUSION only understands the scoring returned by 

the evaluators and uses it to determine the best place for the new service instance. 

5.4.2.1 Four-step service placement 

In this document, we propose a four-step divide-and-conquer approach for efficiently handling the 

service placement operation at the orchestration layer in an efficient, scalable and feasible manner. 

The sequence diagram is shown in Figure 28. 

 

Figure 28: Sequence diagram for the four-step placement algorithm 

 

1) The orchestration domain first selects a number of feasible execution zones based on high-level 

attributes and requirements (distance, policy, application and zone profile, availability, etc.).  

2) The orchestration domain then forwards the service mapping request to these selected zones in 

parallel, and requests to evaluate whether it can provision that service and at what cost. In other 

words, the selected zones analyse the request and make an offer to the orchestration service. 

That offer may even be acting as a binding contract between a zone and a domain, and once a 

particular zone is selected, it has to make sure it can deliver the QoS as described in that offer. 

Note that the orchestrator may request a zone to give an answer within a particular time frame, 

for example to have fast responses in the on-demand service deployment scenario. 

3) The selected execution zones each analyse the deployment or instantiation request and provide 

an offer within the allocated time frame. Each zone manager may trigger a generic or service-

specific evaluator service for doing the analysis and for providing a multi-dimensional score, 

which is then returned towards the orchestration domain.  
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4) In the last step, the orchestration receives all the offers and decides on the optimal execution 

zone, based on the offers from each zone. The offer consists of a set of scores on how effective 

and costly it would be to create a new instance in the corresponding execution zone. The 

domain-level orchestrator service can then make a decision on what execution zone fits the 

needs of the client best, based on priority metrics provided by either the manifest or client (e.g., 

lowest cost, or lowest latency within a particular budget, etc.) as well as FUSION orchestration 

domain policies. 

There are a number of advantages to this approach. First, the zones do not have to expose their 

internal resources (a similar argument can be made for the inter-domain scenario). Second, the 

complexity at the domain-level is lowered and the overall scalability is increased, as the service 

placement operation now becomes a more local optimization process with only a global decision at 

the domain level. Third, the offer as described above could be used as a binding contract, and fourth, 

this approach makes it easy for zones to attract or repel new services (or types), and perhaps could 

result in competition between multiple zones, resulting in lower costs for the service providers in 

case of independent execution zones managed by different providers. 

5.4.2.2 Evaluator services 

This section discusses the concept and implementation of evaluator services as an enabler for 

deploying complex services with specific requirements onto distributed heterogeneous execution 

environments, focussing on the scoring aspect when evaluating possible locations. 

5.4.2.2.1 Scoring of possible locations 

Scoring may take into account for example: 

• Requirement for special hardware, e.g. GPUs with specific shader models. 

• Load and current QoS, for example network, CPU or GPU loads relevant for the specific service. 

• Custom-weighting of network connection quality parameters (delay, jitter, packet loss etc) to 

other services. For example, video may tolerate more packet loss and larger latency than game 

servers. 

• Possible locations of other related services that also need to be instantiated. For example, the 

description may contain a list of the locations of game players, plus a flag for each player 

whether the player only has a thin client application, requiring a client to be instantiated in the 

cloud, which should be taken into account when choosing the location for the server. See further 

for more information about related services. 

• If the service needs to access another already existing service instance, it may ask specific 

aspects about that service instance, e.g. load, distance, or service quality parameters (e.g. 

supported video resolutions). 

FUSION understands the scoring returned by the evaluators. In the simplest case, the score is a single 

float value containing the overall score, meaning that a higher score value represents a better 

possible location. However, the score value may be more fine-grained and could be represented by a 

dictionary to translate standard score component name strings into score values. For deciding about 

the kinds of score components, there are two opposite, possibly contradicting approaches: 

• The evaluator may combine multiple internal score values (e.g. hardware capacity, network 

distance to other services, current load) into one single score value and return that single score 

value to FUSION. 

• Advantage: The combination of multiple aspects into a single score can be service 

dependent. For example, one service may be more interested into good hardware and less 
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into networking bandwidth and response time, while another service may care very much 

about low network latency. 

• Disadvantage: FUSION cannot manage the individual scoring details. 

• The evaluator provides the individual scores (like separate scores for hardware capacity, network 

distances to other services, current load) to FUSION, so that FUSION can use different policies for 

using these values.  

• Advantage: FUSION gets more fine-grained information useful for orchestration decisions 

and can implement its own method/algorithm.. 

• Disadvantage: FUSION may have not the knowledge about the preference of different 

services, or how to appropriately scale and aggregate the various scores, each of which may 

have completely different dimensions. 

In practice a mixture of both approaches may be possible. For example, a service may return always 

an overall score value, which is used by FUSION in the simplest case. Additionally, services may 

return additional values for more refined information which may be optionally used by FUSION. 

We suggest the following approach: evaluators should combine scores into one single or only very 

limited scores as much as possible before reporting them to FUSION. FUSION should only handle 

different kinds of scores if necessary. 

Standard score component names may be for example: 

• "total" into float: a total score which takes all aspects into account the service cares about, for 

example hardware, network distance to other services and current load. 0.0 means that the 

location is not suited at all and 1.0 means the location is perfectly suited. 

• "hardware" into float: suitability of the hardware, where 0.0 means that the hardware does not 

support that service, and 1.0 means the hardware perfectly support that service. 

• "capacity" into float: available CPU and GPU capacity, for example 0.0 means no available 

capacity and 1.0 means full available capacity. 

This scoring is implemented in an evaluator service and not only in components running on the 

execution points itself for the following reasons: 

• One evaluator service instance may calculate scores for a large number of execution points. For 

example one evaluator answering for many cloud servers instead of needing a evaluator running 

on each execution point. 

• Caching of scoring answers. 

• Evaluation mechanisms not specific for execution points, but for groups of execution points. 

5.4.2.2.2 Scoring locations of related services 

As result of the discussion on related services above, in case of related services the scoring of 

possible locations for one service may depend on the location of related services. This means that an 

evaluator service may also inform about possible locations of related services. 

A possible approach – but with bad scaling behaviour without further measures – could be the 

following. A service evaluator may recursively ask FUSION about scoring locations of other related 

services. Formally the service instance request scores only the possible instance locations for the 

single requested service. For example, in the diagram below, request (1) asks only for an instance of 

service A, which is for example a game server. However, to satisfy this request, FUSION effectively 

scores possible locations for complete service instantiations, including not only possible locations for 

instances of service A, but also for instances of services B and C, which happen to be two game 

clients in this example. This total score is then only used in this first step to instantiate the service A 
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at the determined best location. Then, if the user application requests the related service instances B 

and C at steps (13) and (17), FUSION can determine the best location for these instances based on 

the location of the already instantiated service instance A. 

 

Figure 29: sequence flow of a composite service evaluation process. 

 

The time diagrams for this approach is the following: 
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Figure 30: Detailed sequence diagram for complex service scoring and evaluation of service A 
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Figure 31: Detailed sequence diagram for complex service scoring and evaluation of service B and C 

 

This approach satisfies both needs discussed above: 

• Related services can be placed optimally taking the whole picture into account 

• For each service, FUSION can use (extensible) service specific knowledge to rank locations for 

service placement, including ranking for placement of relative services. 

5.4.2.2.3 Optimizing scoring 

In the mechanism above, FUSION may calculate the same or similar scorings multiple times. For 

example, the request (14) in the diagrams above may be similar to one of the requests (4). Therefore 

the request (14) may use the results of requests (4), possibly avoiding the requests (14), basically 

caching the scoring results. However, this may be difficult to implement, because FUSION does not 

understand the request description, and therefore may not be able to easily identify equal or similar 

requests. A simple approach may be just a byte-wise comparison of the description parameter. 

Alternatively, the users and services may provide FUSION an additional identification key in addition 

to the description parameter, which FUSION can use to identify equivalent requests.  However, this 

additional complexity may not be worthwhile, for example because request (1) anyway requires 

much more requests than (3), because at (1) the server location is not known yet. Furthermore, 

evaluators may cache scoring, see above. 

Another aspect is that the above algorithm would scale exponentially with the number of related 

services, because the algorithm effectively scores all possible combination of locations of the 

services. This is of course not acceptable in practice. Therefore smarter approaches are required. 

possible approaches may be: 
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• FUSION may use some heuristics for placing the service components, and so can rule out many 

placement combinations. For example, FUSION may assume to place all related service 

components in the same zone and not score all possible combinations of the related services 

placed in different zones. 

• FUSION knows that many EPs result in exactly the same scoring. For example, all EPs of one data 

centre may be equivalent, so the evaluator must be called only once for one of them, and then 

FUSION can choose the location efficiently based on additional other data, for example the 

current load of individual EPs. 

5.4.2.3 Execution zone resource allocation 

The task of reserving and allocating resources within execution zones for service instances can be 

seen from two perspectives. Firstly there is the perspective of the orchestrator who must select 

execution zones that 1) are in appropriate locations to meet the network aspects (latency, 

throughput, etc.) of service performance constraints as defined in the service manifest, given the 

predicted demand in terms of the geographical distribution of users and the volume of service 

requests from those locations, and 2) have the hardware capabilities required by the service 

instances, including specialized resources such as GPUs supporting specific shading algorithms, for 

example. These aspects are discussed in the preceding section on evaluator services and will be 

refined further in the specific server placement algorithmic work to be documented in deliverable 

D3.2. 

The second perspective of resource allocation is from the point of view of the execution zone. 

Whether they are large or small the available computational resources in a data centre are finite. 

Requests for resources may exceed capacity, especially for smaller execution zones. This is the case 

whether we consider multiple services being deployed by a single orchestrator within an execution 

zone (case a) or the related case of multiple execution zones belonging to different orchestration 

domains running in the same data centre where the different orchestrators may compete for the 

data centre resources to be allocated to their execution zone (case b). An initial algorithm for this 

resource allocation problem for competing requests for finite execution zone resources is presented 

in Section 7.2 - where an auction-based mechanism is applied to services (case a) or orchestrators 

(case b) bidding for resources to run service instances. 

As discussed in Section 2.7 FUSION services can either be pre-deployed in execution zones, prior to 

requests being issued by users, or deployed at invocation time. These two modes of operation 

require radically different response times for the allocation of resources as discussed above. Some 

degree of resource pre-allocation within execution zones may be required to reduce invocation 

latency for on-demand deployment. An example of this might be that a data-centre’s computational 

resources are reserved for an execution zone but not allocated to any specific service. These spare 

resources are made available to the orchestrator and could be used by any of the service instances 

the orchestrator manages to speed up on-demand deployment. The quantity of spare resources 

could then be managed by domain scaling algorithms as described in the second scenario in the 

following section.  

5.4.3 Service scaling 

Service scaling goes beyond service placement. Whereas service placement mainly involves the 

selection of what execution zones should host a service, service scaling refers to the number of 

instances that should actually be deployed in each of the selected zones.  

Instance scaling algorithms typically balance resource usage with application performance.  Upscaling 

the number of service instances will improve application-level performance metrics such as response 

delay, but incurs additional costs (energy, renting). Downscaling is needed to avoid unnecessary 

capacity costs when the service demand is low. 
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While the decision authority for inter-zone scaling is the FUSION orchestration layer, there are 

different options for the intra-zone decision authority. 

A first option is to leave the intra-zone scaling decision authority at the service itself. In this case, the 

intra-zone scaling mechanism is completely opaque to the FUSION orchestration layer. Instances 

could autonomously request duplication or shutdown by contacting the zone manager. Note that 

Domain Scaling (i.e., zone selection) could configure a limited set of properties, such as the maximum 

deployment cost, or a minimal number of instances. These property configurations could be 

provided by the service provider upon registration of his service with the FUSION orchestration layer.  

This opaque scenario is illustrated in Figure 32: 

 

 

Figure 32: Opaque scaling: scaling decisions are taken by the service instance. 

 

The advantage of this scenario is that very application-specific elasticity rules can be applied. Each 

service instance could implement its own elasticity, without exposing Key Performance Indicators to 

other components. The biggest drawback is that a standardized scaling interface to the zone scaling 

component is needed. This may be difficult to enforce in practice, as it mandates the use of 

standardized interfaces. 

In the second scenario, the scaling authority is situated at the Zone Manager. Service instances 

report Key Performance Indicators to the Zone Manager. These values are evaluated against the 

elasticity rules configured by the FUSION orchestration layer and may result in up- or downscaling of 

the number of instances. If a particular service is overloaded and the zone manager cannot further 

upscale, the zone manager may send a notification to the Domain Scaling component situated in the 

FUSION orchestration layer. The zone-orchestrated scenario is illustrated in Figure 33. 
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Figure 33: Decision authority situated at the Zone Scaling component of the Zone Manager. 

 

In this scenario, the interface between service instances and management components of each zone 

could be very narrow: only KPIs must be reported. Furthermore, there is an interface needed for 

configuration of a basic set of elasticity rules.  

This scenario can be further refined, according to the type, granularity and authority of the elasticity 

rules that are being configured by the orchestration layer. One case could be that the configured 

rules should only be seen as a guideline for the Zone Scaling component: the zone manager keeps full 

authority on scaling decisions.  

In another case, the rules configured by the Domain Scaling component are entirely adopted and 

adhered to by the Zone Scaling mechanism. Service providers could register their elasticity rules with 

their service to the FUSION orchestration layer, which translates these to specific scaling rules per 

zone.  

5.4.4 Service deployment 

Given the fact that the service placement was already done, service deployment at the orchestration 

layer simply involves triggering the selected execution zone(s) to start deploying new service 

instances with particular parameters, enabling a particular amount of session slots for that service. A 

zone may accept or refuse the service deployment request. All details of how an execution zone will 

implement the deployment is completely hidden from the point of view of the orchestration domain. 

Information on the status of the deployment and the service instances will be returned to the 

orchestration domain. 

In case of a distributed deployment of a composite service across multiple execution zones, the 

orchestration domain needs to coordinate the deployment of each service atom, and ensure that the 

individual service instance are able to connect appropriately to each other. This could be achieved 

for example by deploying the service atoms one at the time, and providing the locator for each 

service atom as a parameter for the connected service atoms during deployment. More flexible and 

dynamic schemes are also possible.   

5.4.5 Service and resource monitoring  

The service and resource monitoring described in this paragraph relate to key functionalities in 

distributed service orchestration. 
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As a concept, monitoring for orchestration serves the purpose of learning the state of the execution 

layer so that orchestration can take into account the current execution layer state during service 

scaling and placement as well as serve as a reporting function towards the key actors that interact 

with a FUSION orchestration domain: the domain orchestrator for monitoring the health of its 

orchestration domain, service providers to receive feedback concerning service health, deployment 

and scaling information, billing based on resource and service consumption, etc. 

The monitoring state can encompass the following topics (exemplary and not limiting to these): 

• Data centre related metrics 

Depending on the execution zones exposing overall resource utilization and capacity information, 

an orchestration domain can leverage this information for improving service placement and 

service scaling, preselecting execution zones based on availability of particular resources, etc. 

• Service execution related metrics 

This set of metrics comprises service execution and utilization metrics. This includes the overall 

number of service types, instances and available session slots in various execution zones. It may 

also include the resource utilization (e.g., CPU, memory, network or disk I/O, etc.) of specific 

service instances running on physical machines. The latter may be useful for service providers or 

automatic scaling components for measuring service load or triggering the scaling of service 

instances. 

• Networking related metrics 

During service placement and deployment, a FUSION domain orchestrator should take into 

account available network information coming from the FUSION routing plane as well as the 

underlying IP infrastructure. Although we do not intend to use strict network resource allocation 

schemes (as not only FUSION-related traffic will be transported over the network infrastructure, 

and as FUSION has no direct control over the data plane), we do intend to take networking 

related metrics like latency, jitter and bandwidth into account when making the final placement 

and deployment decisions.  

• Application related metrics 

These metrics consist of application-specific monitoring data coming from the application 

services, like for example the actual processing or rendering frame rate. These metrics are 

relevant for the service providers that may want to measure the overall QoE of the deployed 

service instances, as well as for application-specific scaling components, which may decide to 

trigger FUSION orchestration or routing based on these metrics to for example scale instances up 

or down, or to reduce the amount of service requests towards particular instances. 

• FUSION platform related metrics 

These monitoring metrics relate to the state and health of key FUSION architectural components, 

including the zone managers controlling an execution zone, the service routers, etc. 

Given the scale at which FUSION is intended for, an important aspect to consider is the amount of 

information that is available at lowest level and how this information is propagated and aggregated 

so that the amount of monitoring info is kept to a minimum towards the orchestration layer. Also for 

security or business reasons, execution zones and services may want to restrict the amount and type 

of information they want to propagate and publish via the FUSION monitoring interface.  Some of 

the service monitoring information for example may be passed on to the FUSION monitoring 

function as a blob of data that can only be understood by the service provider.  

5.4.6 Inter-domain orchestration 

Figure 34 shows the scenarios of single and multi-domain orchestration considered in FUSION. 
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Figure 34: Single, extended and inter-domain orchestration. 

Option (a) in the figure illustrates the situation where there is a single domain of ownership: a single 

organisation - such as an ISP deploying and operating FUSION services - owns execution zones 

running in its data centres, small servers attached to routers, access nodes or other equipment. In 

this case the ISP’s orchestrator is constrained to deploying service instances in locations within its 

boundary of ownership. 

In option (b) the original domain, shown in the centre, may extend the scope of its operation to 

remote execution zones which it contracts from other organisations. The example on the left of 

figure (b) is a cloud provider who offers computation resources, but does not participate in the 

orchestration of FUSION-compatible services. The example on the right of figure (b) shows a remote 

orchestration domain, e.g. another ISP offering FUSION-compatible services to its own customers 

within its own domain who additionally acts in the role of a cloud provider offering computational 

resources to the original orchestration domain. The set of the two execution zones in the cloud 

provider, the two execution zones belonging to the original orchestration domain and the left-hand 

execution zone within the remote orchestration domain become part of an extended orchestration 

domain under the control of the original orchestrator. The orchestrator is free to deploy, modify, 

remove any services it wishes within the constraints of the quantity of computational resources it 

has contracted, and is paying for, from the other two domains. In option (b) there is no inter-domain 

orchestration involved – the only inter-domain interactions in this option are those related to the 

contracting of computation resources prior to any subsequent orchestration actions to deploy 
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services. The contractual interactions to negotiate the procurement of computational resources with 

remote data centres are considered outside the scope of the FUSION protocols. 

Although the remote orchestration domain in figure (b) is running its own FUSION services it may not 

use the left-hand execution zone to deploy its own service instances, as these are resources it has 

contracted to its customer – the orchestration domain in the centre. It should be noted that the two 

execution zones shown in the remote orchestration domain may (or may not) coexist on the same 

physical data centre. 

Option (c) depicts inter-domain orchestration where there are interactions between two 

orchestrators who cooperate in the deployment of FUSION services across the set of execution zones 

belonging to the two orchestration domains. There are three modes of inter-domain orchestration: 

• Inter-domain orchestration mode 1: Orchestrator A is the primary orchestrator contracted by the 

application developer/service provider. Orchestrator A will receive the full service manifest from 

the app developer/service provider and may subcontract a portion of that manifest (e.g. to 

instantiate service instances in remote geographical regions) to orchestrator B. Orchestrator B 

will invoke its own service placement and scaling algorithms to deploy and manage instances 

within its domain according to the contracted manifest. In this mode the interactions between 

orchestrators A and B are equivalent to those between a service provider and an orchestrator. 

• Inter-domain orchestration mode 2: As in mode 1 orchestrator A is the primary orchestrator but 

in this case orchestrator B acts as an aggregator, or one-stop shop, for all (or a subset) of its 

execution zones. This mode of operation is similar to Figure 34(b) but rather than individual 

execution zones being contracted by orchestrator A from orchestration domain B a set of 

execution zones are made available. In this mode the interactions between orchestrators A and B 

are functionally equivalent to the interactions between an orchestrator and its execution zones 

in the single or extended orchestration domain cases. 

• Inter-domain orchestration mode 3: Orchestrators A and B operate independent services but 

establish contracts to allow their users to roam between the geographical regions covered by 

their respective orchestration domains. For example orchestrator A could operate in Europe, 

orchestrator B in South America. A customer of domain A from Belgium might be visiting Brazil 

for the World Cup and would like to make use of her interactive EPG or real-world tagging 

services which require local instances in Brazil to be made available for invocation to avoid the 

excessive latency or reduced bandwidth that would be caused by accessing instances back in 

Europe in the execution zones contracted to her home orchestration domain A. 

5.4.7 Service routing 

Service routers may run a distributed algorithm to establish their forwarding tables, but 

orchestration layer metrics may be taken into account. Examples include traffic distribution that 

takes into account detailed forecasts of user demand, or service-specific contracts whereby only 

particular regions of users may access the service. 

As shown in Figure 35, one option for a routing management interface between the domain 

orchestration and the service routers. Although in this figure, the orchestration domain coincides 

with the routing domain, we keep the option open that a single orchestration domain spans multiple 

routing domains. 
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Figure 35: The Orchestration Layer may impose policies to the service routing layer. 

The FUSION service routing and forwarding plane is specified in more detail in deliverable D4.1, 

where a distributed routing protocol is also developed as an alternative to the centralised routing 

management function collocated with the domain orchestrators as depicted in the above figure. 

5.5 Management interfaces 

In Figure 36, the initial key management interfaces of an orchestration domain are presented, 

clustered into four key interfaces: 

• The orchestration management interface 

• The execution zone management interface 

• The inter-orchestration domain management interface 

• The routing domain management interface 
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Figure 36: Key FUSION orchestration domain interfaces. 

 

In the following sections, we will elaborate on each interface and provide details in the key functions, 

behaviour and initial parameters for each function. 

5.5.1 Orchestration management interface 

This interface represents the public interface towards external parties for accessing, managing and 

monitoring services and resources deployed and managed by an orchestration domain. It comprises 

a set of specialised interfaces as specified in the following subsections. 

5.5.1.1 Service registration interface 

Below an overview of the key functions related to service registration. 
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Orchestration Management Interface 

FUNCTION NAME 

FUSIONRegisterService (service provider ���� domain orchestration) 

BEHAVIOR 

Register a new service type to an orchestration domain. In the current model, the manifest should 

contain all necessary information regarding the service, its policies and constraints and where to find 

the software packages and/or images. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceManifest Manifest/URL Service manifest (or URL to manifest) containing all information 

RETURN VALUES 

Name Type Description 

Status Int Return code 

ServiceID FUSIONID The registered FUSION service name 

 

Orchestration Management Interface 

FUNCTION NAME 

FUSIONUnregisterService (service provider ���� domain orchestration) 

BEHAVIOR 

With this function, authorized users can remove an existing service type from an orchestration 

domain. This may include stopping all active service instances first. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID Name of the service to unregister 

StopServices Bool Immediately stop all existing instances 

RETURN VALUES 

Name Type Description 

Status Int Return code 
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5.5.1.2 Service querying interface 

Below an overview of the key functions related to the capability of querying the orchestration 

domain about particular services. 

 

 

Orchestration Management Interface 

FUNCTION NAME 

FUSIONUpdateService (service provider ���� domain orchestration) 

BEHAVIOR 

This function can be used to provide updates to an existing service type. This may include updated 

versions of the software packages, changed requirements, policies or cost models, load patterns, etc. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName ServiceName Name of the service to update 

Manifest Manifest/URL New/updated manifest for the service 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Orchestration Management Interface 

FUNCTION NAME 

FUSIONQueryServiceByName (service provider ���� domain orchestration) 

BEHAVIOR 

This function allows authorized users to query for particular information of a specific service type. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID Name of the service under query 

InformationType Enum Subset of what kind of information needs to be retrieved 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Description Structured Structured description of the requested information (XML, 

manifest, etc.) 
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Orchestration Management Interface 

FUNCTION NAME 

FUSIONQueryServiceByCategory (service provider ���� domain orchestration) 

BEHAVIOR 

This function allows authorized users to query for particular services providing particular 

functionality or have particular requirements or features. 

PROPERTIES & PARAMETERS 

Name Type Description 

Categories List List of features to look for 

RETURN VALUES 

Name Type Description 

Status Int Return code 

ServiceNames [ServiceName] A list of all registered services that match the query 

 

5.5.1.3 Service deployment interface 

Below an overview of the key functions related to service deployment, triggered externally by users. 

 

 

Orchestration Management Interface 

FUNCTION NAME 

FUSIONDeployService (service provider ���� domain orchestration) 

BEHAVIOR 

This function allows authorized users to deploy extra instances of a particular service type 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID Name of the service to deploy 

ServiceParameters Blob Service-specific deployment parameters 

DeployParameters Structured FUSION-specific deployment parameters (number of sessions, 

location, cost, etc.) 

RETURN VALUES 

Name Type Description 

Status Int Return code 

InstanceIDs [FUSIONID] List of all instances that have been created 
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5.5.1.4 Accounting/billing interface 

We will not focus on these aspects within the FUSION project. 

5.5.1.5 Security interface 

The security aspects of all these interfaces and components will be tackled in Deliverable D3.2. 

5.5.2 Execution zone management interface 

This public interface serves execution zones to register itself and communicate with an orchestration 

domain. 

5.5.2.1 Zone registration interface 

Given below is an overview of the key functions for registering and managing execution zones in a 

domain. 

 

 

 

 

 

 

 

 

 

 

Zone Management Interface 

FUNCTION NAME 

FUSIONRegisterZone (zone administrator ���� domain orchestration) 

BEHAVIOR 

With this function, a new execution zone can announce and register 

PROPERTIES & PARAMETERS 

Name Type Description 

Zone URI Name of the execution zone 

Parameters Complex A detailed description of the zone, its location and its capabilities 

RETURN VALUES 

Name Type Description 

Status Int Return code 

ZoneID FUSIONID A unique zone ID for this execution zone in the domain 
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Zone Management Interface 

FUNCTION NAME 

FUSIONUpdateZone (zone administrator ���� domain orchestration) 

BEHAVIOR 

With this function, an execution zone can modify its registration parameters to the domain (e.g., 

change key capabilities, etc.) 

PROPERTIES & PARAMETERS 

Name Type Description 

ZoneID FUSIONID Execution zone identifier 

Parameters Structured An updated version of the execution zone specifications 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Zone Management Interface 

FUNCTION NAME 

FUSIONUnregisterZone (zone administrator ���� domain orchestration) 

BEHAVIOR 

With this function, an execution zone can unregister itself from a domain 

PROPERTIES & PARAMETERS 

Name Type Description 

ZoneID FUSIONID Execution zone identifier 

StopServices Bool This flag indicated whether it will immediately shut down existing 

services (this request can be refused by the orchestrator). 

RETURN VALUES 

Name Type Description 

Status Int Return code 
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5.5.2.2 Monitoring interface 

Given below is an overview of the key functions for feeding monitoring information from an 

execution zone to the orchestration domain. Currently, we are still considering both the push and 

pull based models for sharing monitoring information in between FUSION entities. It is still under 

investigation which model or what combination is optimal for distributed service management within 

FUSION. 

 

 

Zone Management Interface 

FUNCTION NAME 

FUSIONUpdateServiceInformation (zone manager ���� domain orchestration) 

BEHAVIOR 

With this function, an execution zone provides the orchestration domain with up-to-date information 

concerning FUSION services running in the execution zone 

PROPERTIES & PARAMETERS 

Name Type Description 

ZoneID FUSIONID Execution zone identifier 

Information Structured Service monitoring information 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Zone Management Interface 

FUNCTION NAME 

FUSIONUpdateResourceInformation (zone manager ���� domain orchestration) 

BEHAVIOR 

With this function, an execution zone provides the orchestration domain with up-to-date information 

concerning the available resources and overall health of the execution zone 

PROPERTIES & PARAMETERS 

Name Type Description 

ZoneID FUSIONID Execution zone identifier 

Information Structured Resource monitoring information 

RETURN VALUES 

Name Type Description 

Status Int Return code 
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5.5.3 Inter-orchestration management interface 

The interactions between domains envision in FUSION were introduced in Section 5.4.6. The 

extended orchestration domain option in Figure 34 (b) does not make use of an inter-orchestration 

interface and is not considered further here. 

Inter-domain orchestration mode 1 has orchestrator A acting in the application developer/service 

provider role and orchestrator B acting in the orchestrator role and hence the interfaces are 

equivalent to the Orchestration Management Interface specified in Section 5.5.1 covering service 

registration, service querying, service deployment, accounting & billing and security. 

Inter-domain orchestration mode 2 has orchestrator A acting in the orchestrator role and 

orchestrator B acting in the execution zone role and hence the interfaces are equivalent to the 

Execution Zone Management Interface specified in Section 5.5.2 covering zone registration and 

monitoring  and the Orchestration Management Interface specified in Section 6.4.1 covering zone 

selection, service lifecycle and monitoring. An additional parameter is required in the functions 

specified as part of the Orchestration Management Interface to identify the specific execution zone 

in the remote orchestration domain that is the target of the management action: 

PROPERTIES & PARAMETERS 

Name Type Description 

ZoneID FUSIONID Execution zone identifier 

 

Inter-domain orchestration mode 3 has roaming between orchestration domains. Interactions are 

required to map equivalent service capabilities between domains, to authenticate users and their 

service requests and to perform accounting and billing transactions. A deeper investigation of the 

interactions will be undertaken in the second year of the project and will be reported in D3.2. 

5.5.3.1 Inter-domain routing management interface 

In all three inter-domain orchestration modes routing information needs to be exchanged between 

domains. In the case of centralised routing management within orchestration domains (see Figure 

35) this will be achieved with the interface specified below. In the case of a distributed routing 

protocol the inter-domain routing protocol requirements are part of the service routing plane and 

are introduced in deliverable D4.1 with a full specification to be produced in deliverable D4.2 at the 

end of the second project year. 
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Inter-domain Routing Management Interface 

FUNCTION NAME 

FUSIONAnnounceServiceID (domain orchestrator A ���� domain orchestrator B) 

BEHAVIOUR 

Orchestration domain A announces the existence of serviceIDs available through its border gateway 

service router. These are either running in execution zones within the domain or in the case of transit 

domains they are available in remote domains. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID The FUSION service name. 

ServiceSlots Int Available service slots. 

BorderRouterID Locator Locator of next hop border gateway service router that the 

border gateway service router in domain B should use. 

RouteInformation Structured Route characteristics, hop count, domain path (in the case of 

transit, equivalent of AS path/set in BGP). 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Inter-domain Routing Management Interface 

FUNCTION NAME 

FUSIONUpdateRoute (domain orchestrator A ���� domain orchestrator B) 

BEHAVIOUR 

Orchestration domain A updates the routing information for a serviceIDs when the number of 

session slots or route information changes. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID The FUSION service name. 

ServiceSlots Int Available service slots. 

BorderRouterID Locator Locator of next hop border gateway service router associated 

with this update. 

RouteInformation Structured Route characteristics, hop count, domain path (in the case of 

transit, equivalent of AS path/set in BGP). 
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5.5.4 Routing and networking management interface 

There are two options for managing service routing discussed in D2.1 and in more detail in D4.1: 1) 

centralised routing decisions made within a domain with the routing management algorithm being 

collocated with service orchestration functions; and 2) distributed routing algorithms collocated with 

the forwarding functions of service routers. In the first option the routing and forwarding functions 

are in separate entities (see Figure 35) and the interfaces for configuring the forwarding tables are 

specified below. In the second option routing updates are exchanged through a distributed routing 

protocol and the configuration of forwarding tables is an internal interface within the service routers. 

For the second option the routing protocol and internal interface to forwarding tables is part of the 

FUSION service routing plane and, as such, is discussed in deliverable D4.1.  

5.5.4.1 Router configuration interface 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Inter-domain Routing Management Interface 

FUNCTION NAME 

FUSIONWithdrawServiceID (domain orchestrator A ���� domain orchestrator B) 

BEHAVIOUR 

Orchestration domain A announces that a ServiceID or its route is no longer available through the 

specified border gateway service router. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceID FUSIONID The FUSION service name. 

BorderRouterID Locator Locator of next hop border gateway service router. 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Routing Management Interface 

FUNCTION NAME 

FUSIONCreateForwardingEntry (domain orchestrator ����  service router) 

BEHAVIOUR 

Forwarding entries are created in the service router according to the routing decisions made by the 

routing management functions collocated with the domain orchestrator. 
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PROPERTIES & PARAMETERS 

Name Type Description 

RouterID FUSIONID Service router identifier 

EntryID  EntryID Forwarding table entry identifier 

Information Structured Forwarding entry, containing ServiceID(s), load balancing 

parameters, locator(s) of next hop 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Routing Management Interface 

FUNCTION NAME 

FUSIONUpdateForwardingEntry (domain orchestrator ����  service router) 

BEHAVIOUR 

Forwarding entries are updated in the service router according to the routing decisions made by the 

routing management functions collocated with the domain orchestrator – to modify the set of 

ServiceIDs, load balancing parameters or net hop locator(s). 

PROPERTIES & PARAMETERS 

Name Type Description 

RouterID FUSIONID Service router identifier 

EntryID  EntryID Forwarding table entry identifier 

Information Structured Forwarding entry, containing ServiceID(s), load balancing 

parameters, locator(s) of next hop 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Routing Management Interface 

FUNCTION NAME 

FUSIONDeleteForwardingEntry (domain orchestrator ����  service router) 

BEHAVIOUR 

Forwarding entries are deleted from the service router according to the routing decisions made by 

the routing management functions collocated with the domain orchestrator. 
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5.5.4.2 Monitoring interface 

  

PROPERTIES & PARAMETERS 

Name Type Description 

RouterID FUSIONID Service router identifier 

EntryID  EntryID Forwarding table entry identifier 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Routing Management Interface 

FUNCTION NAME 

FUSIONProvideRoutingInformation (service router ���� domain orchestration) 

BEHAVIOUR 

Service routers provide monitoring data to the routing management functions in the orchestrator 

concerning historical service request and network performance statistics collected from the 

perspective of that service router. 

PROPERTIES & PARAMETERS 

Name Type Description 

RouterID FUSIONID Service router identifier 

Information Structured Request and network resource monitoring information 

RETURN VALUES 

Name Type Description 

Status Int Return code 
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6. DISTRIBUTED SERVICE EXECUTION MANAGEMENT 

In this section, we discuss in detail the functional design of a FUSION execution zone for deploying 

and managing FUSION services on top of an existing data centre or physical infrastructure.  

6.1 Functional design 

The execution zones are very closely coupled to the physical execution platforms and resources on 

which FUSION services will be deployed and managed. Similar to an orchestration domain, an 

execution zone consists of a number of key functional components each dedicated to a very specific 

set of tasks.  

6.1.1 Overall design decisions 

For designing a FUSION execution zone, we propose a PaaS approach with the following key 

characteristics. First, for compatibility reasons, we will initially deploy the FUSION execution zone 

services on top of existing data centre or hardware infrastructure management systems, with 

optional hooks deep into the infrastructure and management layers for extra efficiency or reliability. 

This approach allows to quickly enable existing (cloud, grid, etc.) centralized and distributed 

infrastructures to become FUSION-ready to start deploying and managing FUSION services on top of 

these infrastructures. This also enables a potentially faster adoption of the FUSION APIs in existing 

environments. For designing the overall orchestration and management of an execution zone, we 

will also use the same modular approach as for the FUSION domain-level orchestration services, with 

REST APIs in between the key execution zone components. This will result in a scalable solution that 

can easily be deployed and managed on potentially large data centres.  

In order to minimize the amount of functionality and components that must be ported or rewritten 

for different underlying infrastructures or management systems, we envision a DC abstraction layer 

for all critical interactions with the underlying infrastructure, as we will discuss later. In such a way, 

most functions of the execution zone manager can be reused across different implementations, and 

only the DC abstraction layer needs to be implemented for a specific environment. This is shown in 

Figure 37 below. The FUSION zone manager runs on top of a FUSION DC management backend that 

is optimized for the existing DC management layer currently running on that infrastructure. Note that 

a bare metal environment is just a special case. In some implementations, we envision that part of 

the FUSION DC abstraction layer could have direct access to the underlying hardware, for example to 

enable higher efficiency. The FUSION service instances are automatically wrapped by the DC 

abstraction layer into whatever execution environment the underlying data centre management 

layer supports. This could be a native environment (e.g., grid cluster), or a virtualized environment 

(e.g., an OpenStack or EC2 environment, using various types of hypervisors).  

 

Figure 37: Deploying a FUSION execution zone on top of existing managed data centres. 
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6.1.2 High-level design 

The high-level functional design of the key functions of the execution zone and their primary 

interactions are shown in Figure 38. Note that most functions are considered to be part of the 

execution zone manager. For clarity, we did not include a security component and all its 

interconnections, but obviously, all authentication and policy decisions need to be handled by this 

component. 

 

 

Figure 38: High-level design of a FUSION zone manager and its key functions. 
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This component is responsible for ensuring proper balancing and scaling of FUSION service 

atoms within the zone. Depending on the requirements or constraints from the service as well 

as the complexity of the execution zone, an execution zone could automatically decide to scale 

in or out a number of service instances, or decide to migrate instances from one location to 

another. 

• Service placement 

This component is responsible for finding the optimal set of hardware resources as well as 

physical location of a particular service instance within an execution zone. This component 

needs to take into account the service requirements on the one hand (e.g., resource 

requirements, being collocated with another service instance, etc.), and the infrastructure 

capabilities and load on the other hand. In case of large data centres, the placement across 

server blades and server racks may be important as well. Because a FUSION execution zone will 

typically be deployed on top of existing cloud management software, the accuracy and detail of 

what resources are available where and the overall placement accuracy may differ from 

implementation to implementation. For example, it may not be possible to easily guarantee 

deploying two service instances on the same physical machine, or to have a complete overview 

of the layout of the data centre – these capabilities will be imposed/limited by the actual 

interface to the underlying cloud infrastructure.   

• Monitoring 

This component is essential for the overall operation and health of the service instances. This 

component will capture both monitoring information coming from all active service instances 

(e.g., the available session slots, the actual frame rate, etc.), as well as capture monitoring 

information from the physical infrastructure using probes. This information will be partially 

aggregated and forwarded to many other internal zone management functions. Some 

information will also implicitly or explicitly be forwarded towards the orchestration and the 

routing domains. 

• Service gateway 

This component is part of the execution zone as well as at least one FUSION routing domain. 

External service requests will be terminated here and will be forwarded towards an appropriate 

service instance. 

• DC abstraction layer 

As mentioned before, in the initial implementations, we envision an overlay PaaS approach, 

where the FUSION zone orchestration services are running on top of an existing cloud or 

infrastructure management platform. The DC abstraction layer is a crucial component that will 

shield most, if not all, DC specific functions from the other zone management functions. This 

includes the actual service embodiment and deployment, the monitoring information, etc. We 

do envision the capability for this DC abstraction layer to in some cases also have direct hooks or 

access to some parts of the hardware for higher efficiency.  

6.2 Lifecycle management of an execution zone 

As we currently assume an overlay approach for the FUSION execution zones, we assume that the 

physical infrastructure and the corresponding data centre management software is already 

operational.  For deploying the execution zone functions, we are currently considering two main 

models. 

In the first model, we assume that most of the zone manager functions are actually deployed and 

managed fully agnostic of the underlying environment. In this case, the DC abstraction layer should 

be deployed first, which then also has some basic functionality and capabilities for automatically 
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deploying the other EZ services, which could be modelled as FUSION services themselves. The first EZ 

service to deploy is the EZ deployment and lifecycle management service, automatically wrapping 

them as needed in VMs or containers as supported by the data centre. Next, the other EZ services 

can then be deployed via the EZ deployment service, in which case the health and scaling of these 

services would then also be under the control of the execution zone itself using the same 

mechanisms as the FUSION application services. Although this model has the advantage of having 

the least dependencies with the underlying infrastructure, it does complicate the overall deployment 

and management of the EZ services. 

In the second model, all EZ services are made compliant to the underlying DC management platform, 

and they are all deployed and managed using the interfaces and using the image formats supported 

by the DC management platform. The lifecycle management of the EZ services is also managed by 

the DC management platform. This model significantly simplifies the overall deployment of the EZ 

services on top of an existing DC infrastructure. However, this also implies that all EZ services need to 

prepared, tuned and deployed separately for all different types of DC infrastructures on which an EZ 

needs to be deployed. 

After the EZ services are deployed, the execution zone needs to be connected to at least one 

orchestration domain as well as routing domain. This can be done in a number of ways: 

• The home address of the orchestration services as well as service router(s) can be provided 

manually during deployment of the execution zone. 

• The orchestration and routing domains could also be automatically discovered, for example via a 

FUSION broadcast mechanism. One approach here could be to first discover the home routing 

domain for that execution zone, which in its turn may then also provide the corresponding home 

orchestration domain. 

• In case there is no orchestration domain available yet, an orchestration domain could also be 

deployed automatically inside that execution zone. This could then be the home orchestration 

domain for other execution zones as well. Alternatively, when another home orchestration 

domain is announced, the existing orchestration domain could decide to migrate its state to the 

new orchestration domain and shut itself down. 

6.3 Key functions 

This section provides details on the key functions of an execution zone for managing FUSION services 

that deployed on top of a particular data centre or compute environment. 

6.3.1 Selecting a zone for service deployment 

In FUSION, we envision evaluator services and execution zones to play an important and active role 

in helping to make the decision about the execution zone in which a particular new service should be 

deployed. An orchestration domain may request individual execution zones for making an 

assessment and offer for deploying a service in its execution zone. An execution zone in its turn may 

rely on external evaluator services for providing valuable input for making an appropriate offer. The 

entire process is depicted in Figure 39, and assumes the deployment of one (or more) service atoms 

within an execution zone. 
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Figure 39: Sequence diagram for selecting a zone for service deployment. 

 

1) The orchestration domain requests a zone to evaluate the deployment of new service instances 

with particular service-specific and FUSION-specific parameters.  

2) The zone orchestrator subsequently first fetches all relevant information regarding that service 

type from an optional internal zone service repository, which caches all relevant information 

regarding previously deployed service types. This may include the service manifest, the software 

packages, historical monitoring data, etc. If the repository does not have actual information 

regarding the service, it needs to request the information from the orchestration domain (not 

shown on the diagram). Alternatively, the orchestration domain could also send the manifest 

along with the evaluation request. 

3) In case the service requires a special evaluator service for making the evaluation, and in case this 

evaluator service is not deployed yet in the execution zone, the zone manager can decide to first 

deploy the evaluator service as a new service. Note that the zone manager could also decide not 

to deploy the evaluator service (e.g., due to time or policy constraints), and simply deny the zone 

evaluation request. When it is receiving many evaluation requests, it can decide to deploy that 

evaluator service to be able to evaluate future requests. 

4) The evaluation request is subsequently forwarded to the appropriate evaluator service (which 

could be a generic evaluator service), which will do all necessary evaluations and which will 

return a score, which can range from a simple float value to a more complex set of key-value 

pairs. 

5) Using the score, the zone manager will make an appropriate offer towards the orchestration 

domain. Note that due to internal policies, the zone manager may decide to decline the offer of 

change the conditions of the offer. For example, although a zone may be capable for deploying 

new instances of a service, it may decide not to do so in order to better serve future instantiation 

requests. 

6.3.2 Service placement 

Service instances that will be deployed inside a FUSION execution zone needs to be placed on the 

appropriate data centre infrastructure. In the simplest case, the zone manager could rely on the 

available service placement functionality that is provided by the existing data centre management 
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layer. This may involve translating FUSION service specific requirements related to compute, 

memory, storage, network and QoS onto the available flavours and data centre locations.  

Depending on the amount of flexibility and configurability supported by the underlying DC 

management layer, the FUSION zone service placement may have either only limited impact on the 

service placement, or may have a strong impact. Due to the specific requirements that FUSION 

services may have (for example related to specialized hardware or QoS guarantees), only having a 

limited impact on the service placement and resource control may not be enough however. In such 

case, extensions could be made to the DC management layer to enable more fine-grained  control 

over the DC resources. This could for example be achieved by providing plug-ins and extensions to 

OpenStack for supporting these capabilities, which the FUSION zone management function 

subsequently can use. In the project, we will explore this option for specific scenarios and test cases 

(e.g., exposing heterogeneous hardware, probing and enabling efficient inter-service communication 

mechanisms, etc.) 

6.3.3 Service deployment 

Service deployment in an execution zone is a complex function that consists of many key steps with 

the final goal to have a new FUSION service instance up and running in a particular execution zone. 

This involves proper placement, fetching the software, preparing an execution point environment, 

and instantiating the FUSION service inside that environment. This section discusses these steps in 

more detail. 

6.3.3.1 Service deployment scenario 

In this section, we discuss a typical FUSION service deployment scenario. We assume that there is an 

explicit trigger from the orchestration domain to deploy a new instance of a particular service in that 

execution zone. Note that the trigger could also come from the execution zone itself (load balancing) 

or even from the routing domain. We assume that the first three steps of the domain-level service 

deployment already have been completed and that this execution zone has been selected to deploy 

one or more instances. The different steps are depicted in Figure 40.  

 

Figure 40: Sequence flow for deploying new FUSION instances in an execution zone. 
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1) The domain orchestrator first triggers the selected execution zone to deploy new service 

instances using the deployment interface. The zone orchestrator will handle the request, check 

whether the request aligns with previously made engagements, and sends an initial response 

back, while further processing and managing the request. As mentioned earlier, we assume that 

the execution zone selection procedure has already been completed. 

2) The zone orchestrator then triggers the lifecycle management service to start deploying new 

instances of that service type inside the execution zone. This is a complex step that involves 

many subsequent smaller steps that we will discuss in more detail in the next section. This 

includes fetching all necessary information concerning that service type from a repository or 

external location. This includes the software packages, images or snapshots and other relevant 

information that is required to deploy that service. In case the latest version is already available, 

this data may also be fetched from a local repository. 

3) Before the service can actually be instantiated, the zone manager also needs to find the best 

location inside the data centre to place the corresponding service atoms involved in the service 

instantiation process, based on service requirements and resource availability. Note that the 

placement service may reuse cached placement decisions made earlier, for example during the 

evaluation phase or during previous deployment requests. Note also that this step can occur in 

parallel to the fetching of all necessary software packages or images. 

4) The lifecycle management service then requests the DC abstraction layer to prepare the software 

package or image for deployment, for creating the necessary environment and allocating the 

necessary resources for hosting the new instance(s). The preparation step may involve creating 

and installing a new VM image based on the provided software packages, resolving all 

dependencies, etc. It may also involve registering and uploading the VM into the DC 

management platform. 

5) Next, the DC abstraction layer starts creating the necessary environment for creating new 

instances. This may involve actually physically deploying and preparing the environment, or 

simply instructing an existing cloud management platform to create a new instance of a 

particular image using a particular flavor. This step also includes setting up the necessary intra-

zone networking to make the service visible and available internally and/or externally. 

6) Once the new environment is ready, the lifecycle manager triggers the FUSION instance (which is 

embedded in that environment) to start running, passing on the service instantiation parameters 

provided during the instantiation request. We envision a number of extra FUSION-related 

management services to also be present in that environment, which will assist in a number of 

tasks like lifecycle management, monitoring, self-healing, etc.  

7) Once the FUSION application service is up and running, it should announce its presence and 

announce its available session slots (amongst other information) towards the monitoring service.  

8) This monitoring service will keep track of this information and forward it towards all necessary 

management services, including the service gateway. 

9) The service gateway finally injects this information (i.e., the extended session slot information) 

into the routing domain so that new service requests can be forwarded towards these newly 

created instances. Note that the orchestration domain or execution zone could already have 

inserted this information provisionally in the routing domain, before the instances are already 

available, to reduce the amount of time before the new instances are visible and routable from 

the routing domain. 
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6.3.3.2 Service lifecycle management 

In this section, we discuss lifecycle management of FUSION services within an execution zone. We 

focus on the lifecycle management of one particular service atom, and we start by zooming in on the 

deployment and instantiation phase. This is shown in Figure 41. 

 

Figure 41: More detailed deployment sequence flow on top of an existing DC management layer. 

 

1) In a first step, the latest version of the service metadata and all necessary software packages or 

images need to be fetched remotely. This application data can partially come from a FUSION 

repository inside an execution zone or from the domain orchestration, but may also partially 

come from external repositories in case (some of) the data is stored externally. In many cases, 

the execution zone will cache this data (if allowed by the service provider) to significantly reduce 

the deployment latency and download bandwidth when new requests to deploy that service are 

issued, especially as these software packages can be quite significant for non-trivial application 

services. 

2) As soon as the service metadata is available to the deployment service, it can issue the service 

placement function to find the optimal location for deploying the new instance within the data 

centre. Note that this step may also reuse previous service placement results.  The service 

placement function may interact with the DC abstraction layer, as the FUSION placement 

function may not have direct impact on the exact low-level placement onto the physical 

infrastructure. 

3) In the third step, the environment or execution point in which the service instance will be 

deployed, needs to be prepared. As this is a DC specific function, it is up to the DC abstraction 

layer to perform this function. The preparation step could involve installing all necessary 

software packages and configurations inside a DC-specific VM. It could also involve deploying the 

same software already on the physical hardware, for example in case of light-weight containers. 

This will likely also involve installing FUSION-specific software utility packages that will assist in 

the overall operation of the FUSION service within the data centre. Again, this process of 

encapsulation could be cached: DC-specific VMs containing all necessary software packages and 

pre-configurations could be stored in a local (or even remote) repository so that they can easily 

be reused during later deployments. 
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4) Once the service preparation and encapsulation is done, the resource allocator will be triggered 

to allocate a particular amount of resources and instantiate a new instance. This function will 

also be handled by the DC abstraction layer, as this is very DC-specific.  

5) The DC abstraction layer will then bootstrap the environment containing the service instance. 

This may involve spawning a new VM instance using a particular flavour or instance type (e.g., a 

tiny, medium or large instance), creating and starting a new container, booting a system, etc. 

Once the containing environment or execution point has been bootstrapped, the lifecycle 

management function should trigger the FUSION application service to start running. This can be 

done in a number of ways, and will be worked out in more detail during the project. One option 

is to trigger a FUSION helper service inside the environment that knows how to start that service 

with the necessary parameters. This helper service is an agent that will moderate and coordinate 

all lifecycle management functions between the zone manager and the application service. This 

includes starting and stopping an application, extracting monitoring information, triggering 

specific actions when particular events occur, etc. 

A second key function is service termination. In this case, the active service instance will be 

terminated and removed from FUSION. The trigger for termination could be multifold, either by the 

service instance itself, explicitly by the service provider, or due to an automatic scaling down 

operation issued by either the load balancing function of the zone manager or the orchestration 

domain. This is shown in Figure 42, where we assume the trigger is coming from the orchestration 

domain. 

 

Figure 42: High-level sequence flow for service termination. 

 

1) The zone orchestration service receives a request from the domain orchestrator to either 

explicitly reduce the amount of available service instances or to reduce the amount of session 

slots for a particular service type, irrespective of the amount of instances it comprises.  

2) The zone orchestrator forwards the request towards the lifecycle management function, which 

will decide to either just trigger one or more instances to reduce the amount of session slots, or 
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to explicitly terminate idle instances that are currently not handling any sessions. The state 

manager should try to reduce the session slots in an intelligent manner and avoid a 

fragmentation of many unused session slots spread across many service instances. At the end, 

this may even involve a compaction phase, where sessions are migrated to other instances or 

simply terminated. 

Note that in our design, we envision an execution zone to have more freedom and flexibility 

towards deploying a particular amount of instances with respect to host a particular amount of 

service sessions within the execution zone. The execution zone could decide to be more or less 

aggressive with respect to the amount of deployed instances or available sessions slots than the 

orchestration domain requests. An execution zone could for example only publish a subset of its 

available instances or session slots to one particular domain.  Consequently, the amount of 

instances or session slots the zone orchestrator requests to reduce could differ from the amount 

requested by the orchestration domain. 

3) Assuming an instance was selected for termination, the instance is notified, for example via the 

FUSION utility service that is also deployed in the same environment, to enable a graceful 

termination of the instance and potentially any active sessions. When the instance is not 

responding, the instance will be terminated abruptly after a timeout period. The monitoring 

service will be notified of the reduction in available session slots, which will also propagate into 

the routing domain (step 6).  

4) The lifecycle manager may then decide to terminate or simply clean the enclosing environment. 

This may involve terminating the execution point and its environment and removing it from the 

system. FUSION could also decide to simply clean the environment to be able to quickly reuse it 

for deploying a new instance of potentially other service types. Similarly, the hardware resources 

are freed so that they can be used for other service instances. 

5) In this step, the DC abstraction layer triggers the environment to be reset or to terminate. 

6) Finally, the zone orchestrator is notified of the successful termination of the requested amount 

of sessions slots or service instances, which may also notify in its turn the orchestration domain; 

similar information is also propagated to the routing domain. 

6.3.3.3 Optimizing service placement and deployment 

Because of the intrinsically demanding nature of the services we envision to be deployed on a 

FUSION architecture, optimizing the placement, deployment and configuration of a particular 

FUSION application service onto the physical resources of a particular execution zone, it is important 

to take into account the available requirements and monitoring data from the services on the one 

hand, and to combine this with the nature and availability of the physical resources (compute, 

memory, network, storage, other, etc.), the characteristics of the underlying software platform 

(hypervisors, schedulers, deployment framework, etc.) as well as the location and characteristics of 

the already deployed FUSION services. The latter can be leveraged for optimizing inter-service 

communication, following anti-affinity policy rules, taking into account interference patterns in 

between services deployed on the same infrastructure, etc. The overall architecture is depicted in 

Figure 43. 
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Figure 43: Optimizing service placement and deployment 

 

Within the FUSION project, we will develop algorithms and heuristics for optimizing the placement 

and deployment of FUSION services by taking into account these aspects, both at a coarse-grain level 

across execution zones, as well as at a fine-grain level within a FUSION execution zone and 

potentially also within a FUSION execution point. 

6.3.4 Monitoring 

In this section, we will discuss both resource as well as service monitoring in the context of FUSION, 

where demanding interactive services are deployed in a distributed manner relying on various types 

of virtualization and hardware resources.  

The goal of monitoring in FUSION is to capture the impact of FUSION services when being deployed 

on HW architectures (CPU load, memory bandwidth consumption, CPU cache behaviour, etc.), and 

vice-versa, to also capture the impact of a particular HW architecture onto these services. To enable 

this, we need to establish a set of metrics to be able to measure the overall operational health of 

both services as well as the infrastructure and platform. Furthermore, the monitoring information 

will also be key input with respect to the FUSION orchestration layer during service placement, load 

balancing, etc. Different possibilities are being evaluated at the moment of writing of this document. 

In this section, we will discuss the various elements and pieces that will be studied in the FUSION 

project. Basically, we see three types of monitoring functions, namely probes, aggregators and 

reporting functions. We will now briefly discuss the role of each function: 

6.3.4.1 Probing 

The goal of probing is to profile and measure various types of runtime information concerning 
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also enable characterizing a particular type of service in terms of resource allocation and utilization, 

which is of key importance for the orchestration layer when deploying, planning and/or mapping a 

particular service instance onto a particular execution zone and physical host. 

In FUSION, we will study what probes and resource metrics are necessary for particular types of 

services to be able to characterize and effectively monitor these services. This relates to the use case 

requirements we presented earlier. 
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6.3.4.2 Aggregation 

The goal of the monitor aggregation services is to gather input from all relevant probes in a 

configurable or programmable manner to be able to generate a set of combined performance 

indicators. In other words, they collect the lower-level monitoring data and produce higher-level 

monitoring data based on for example a configuration script.  

In the FUSION project, we will establish a set of relevant performance indicators for some of the use 

cases to evaluate the effectiveness of our approach. It is a topic of research how this configurability 

and programmability can occur in order to provide meaningful aggregation. 

6.3.4.3 Reporting 

The goal of reporting is to forward and distribute the aggregated monitoring information to other 

services in FUSION so that these services can exploit the captured and aggregated monitoring 

information. These target services can be either FUSION core services or other application services. 

We currently consider three main reporting models: (i) a hierarchical propagation model, (ii) a 

distributed propagation model and (iii) a hybrid model whereby inter-zone and inter-domain 

reporting occurs in a distributed or hierarchical manner and a hierarchical model within a platform or 

execution zone. 

Which information will be reported and its periodicity is one of the research aspects of FUSION. 

Another key question is whether a FUSION entity should also report on the actual resource usage of 

a service/platform/zone/domain, or whether it is more beneficial to report in terms of capacity and 

availability, for example towards orchestration. Does one report on specific entities or does one 

provide aggregated information? Other questions that we will focus on in more detail include how 

cross-zone services are monitored, aggregated and reported, and who is responsible for handle this 

information.  

6.3.4.4 Service and Resource Monitoring Architecture 

As an example, we display a possible service and resource monitoring stack for a single physical host 

in an execution zone in Figure 44 below. 

 

Figure 44: FUSION Service and Resource Monitoring Architecture 
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We identified the following key components: 

• Service probe: measuring application/service specific metrics 

• VM Probe: measuring VM resource specific metrics 

• Resource probe: measuring HW platform specific metrics 

• Resource aggregator: collecting and aggregating all resource monitoring data 

• Host aggregator: collecting and aggregating the monitoring data from all deployed service 

instances and resource utilization 

• Host reporter (or informer):  deals with the distributed aspects of monitoring and the sharing of 

monitoring information (including privacy and policy aspects) 

6.3.5 Data centre abstraction layer 

We envision that a FUSION execution zone initially would be deployed on top of an existing data 

centre management system and depend on the underlying layer for managing the services and the 

hardware resources. Although this is not a strict requirement, it does simplify the deployment of 

FUSION execution zones in existing data centres, at the expense of reduced flexibility control as the 

zone manager may or may not have direct access or control to the underlying layers. It does however 

allow to very quickly enable parts of existing data centres for running FUSION services without 

immediately having to integrate all FUSION functionality into the existing management platform or 

replacing it by a native FUSION environment. It also means that the lowest layers of service and 

resource management do not have to be implemented from scratch, but that we can rely on existing 

proven management systems. In the long run however, we expect a closer integration of the key 

FUSION APIs into some of the existing cloud management APIs. For example, the OpenStack APIs 

could be extended with some of the key FUSION APIs and capabilities for enabling the required 

FUSION functionality. Data centres supporting these OpenStack APIs could then very easily be 

transformed into native FUSION execution zones.  

In this section, we discuss some of the key functions of this DC abstraction layer. The key role of this 

service is to act as a mediator between the northbound zone orchestration services and the 

southbound data centre management platform. It needs to understand all requests coming from the 

northbound APIs and translate them into the appropriate southbound APIs, and vice versa. In the 

extreme case, the DC abstraction layer can also have direct access and control over the bare 

hardware infrastructure.  

An overview of the key northbound functions of the FUSION DC abstraction layer are listed below. 

These will be worked out in more detail during the project: 

• Encapsulation interface  

This interface provides a number of functions for creating DC-specific environments for 

deploying FUSION services. This can range from native environments for which physical 

resources need to be allocated, towards preparing VM images for inserting and deploying them 

in a data centre. 

• Lifecycle management interface  

This is the overall interface for deploying and managing the lifecycle of the enclosing 

environment in which FUSION services are running. This includes starting and stopping these 

environments on the data centre infrastructure. 

• Monitoring interface  
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We envision a monitoring interface that enables querying the underlying data centre for 

resource and service monitoring information. We also foresee the possibility of a zone manager 

to be able to deploy specific monitoring probes into a data centre for measuring specific 

information. 

• Administrative interface  

This interface contains several administrative functions, including accounting and billing, 

authentication and authorization, etc. 

6.3.6 Service gateway 

The service gateway is the intermediary between an execution zone and the FUSION service routing 

layer. Service requests that have been routed to the zone are forwarded internally to one of the 

running instances. This forwarding can be based on: 

• A FUSION identifier: e.g., a stateful service may have its own identifier 

• Load-balancing rules: the zone manager may set load balancing rules for the service gateway. 

The functionality of the service gateway is detailed in Deliverable 4.1. 

6.3.7 Light-weight virtualization and deployment 

In FUSION, we envision light-weight deployment and virtualization models for quickly and efficiently 

deploying and running FUSION service instances within execution zones and execution points. As 

FUSION application services may need to be deployed on demand in a distributed execution zone, 

we need efficient ways for fetching the software packages and for provisioning and deploying new 

instances. Within the FUSION project, we plan to investigate the utilization of light-weight containers 

in combination with fine-grained resource control to facilitate these goals.  

To measure the scalability and overhead of light-weight containers, we created an initial series of 

experiments, using the low-level capabilities of Linux for providing fine-grained isolation of the 

application environment as well as the resources, by leveraging the Linux namespaces, cgroups, 

chroot and by exploiting the shared mounting and binding functionalities in an efficient manner. We 

added very simple package management and state management capabilities as well as a 

management interface for quickly creating new containers or nooks, deploying a particular software 

package in the nook and starting/pausing/stopping the service running in the nook. A container or 

nook can be regarded as a FUSION execution point within which FUSION services can be deployed 

and managed. 

In Figure 45, we show the overhead for the three main operations (and their respective reciprocal 

functions) needed to get a FUSION service up and running: 

• NookAdd: creating a new execution point (here called a container or nook) for deploying a 

services. 

• BundleIn: installing the software packages inside the environment; obviously, this depends on 

complexity of the service; in some cases, the software packages may be preinstalled and 

preconfigured along with the creation of the container;  

• NookStart: starting the application service contained in the nook, as specified in a manifest. 

In the graph, we show the amount of time each operation takes for adding/removing or 

starting/stopping the Nth nook. As can be observed, deploying, starting and stopping the simple test 

services inside the nook only takes a fraction of a second, even when thousands of these services are 

active on the same physical system (note that these test service are not compute-intensive but 

mainly serve as dummy services for evaluating the system). The time for creating and destroying 

nooks (i.e., execution points or containers) seems to increase linearly with the amount of nooks that 
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are already on the system. This is due to the overhead of the Linux mount tables that we use 

intensively for efficiently sharing software libraries and environments across containers, but which 

seems to scale linearly with the number of entries in the mount tables. However, even with a 

thousand active nooks, the overhead for creating another one still only takes roughly two seconds.  

Note that due to the light-weight isolation, no memory needs to be reserved or partitioned explicitly 

as with full system virtualization methods. Also, as there is only one active operating system, a lot of 

duplication in kernel structures, as well as system software is avoided, saving  large amount of 

memory in case of many light-weight services.  

 

Figure 45: Overhead of light-weight container deployment 

 

In Figure 46, we show an update version of our simple container-based management system, where 

we partially optimized the initial implementation. As can be observed, the overhead of creating a 

new execution point or nook is significantly reduced, allowing to create several thousands of light-

weight environments, each taking at best a handful of seconds. Although we do not intend to create 

that many execution points in parallel on one physical machine, it does show the flexibility and speed 

of setting up or removing such an environment, which can significantly reduce the start-up latency in 

case of on-demand or on-standby service deployment scenarios. 
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Figure 46: Update on overhead of light-weight container deployment 

 

6.4 Management interfaces 

The key management interfaces of a FUSION zone manager, who is responsible for managing FUSION 

services and execution resources, can also be divided into four key interfaces, as is depicted in Figure 

47:  

• An orchestration management interface 

• A routing and networking management interface 

• A service management interface 

• A data centre management interface 
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Figure 47: Key FUSION zone manager interfaces. 

 

In the following sections, we zoom in on each interface and discuss the initial set of key functions per 

interface. In this section, we only describe the key properties and expected behaviour of the 

interface functions; it is up to the zone manager to decide how to implement this function. Later, we 

will elaborate on how this can be implemented by the functional design we described earlier. 

6.4.1 Orchestration management interface 

The orchestration management interface handles all direct communication in between an 

orchestration domain and a zone manager. Three sets of key functions that belong to this interface 

include the service pre-deployment and corresponding zone selection, overall service lifecycle 

management and exchanging service and resource monitoring information. 

6.4.1.1 Zone selection 

In the four-step placement approach, the execution zones and corresponding zone managers are 

actively involved in selecting an appropriate execution zone for deploying a number of instances. 

Orchestration 

Domain

Data Centre

Management

Zone 

Manager

FUSION 

Service

Routing 

Domain

Orchestration interface

S
e
rv
ic
e
 in
te
rf
a
ce

Data centre interface

R
o
u
ti
n
g
 in
te
rf
a
ce



D3.1 Initial Spec. of algorithms & protocols for service-oriented network mgmt Page 124 of 146
 

Copyright © FUSION Consortium, January 2014 

Zone Selection Interface 

FUNCTION NAME 

FUSIONZoneEvaluate (domain orchestration ���� zone manager) 

BEHAVIOR 

This function allows an orchestration domain to request a zone manager to evaluate the request for 

deploying a number of instances of a particular service type inside the zone managed by a zone 

manager. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName URI Name of the service 

ServiceParameters Blob Deployment parameters for the service 

DeployParameters Structured FUSION-aware deployment parameters for the zone 

Timeout Time Maximum amount of time for making the evaluation 

RETURN VALUES 

Name Type Description 

Score KeyValueList The multidimensional score 

 

6.4.1.2 Service lifecycle management 

These service lifecycle management functions are high-level management functions coming from the 

orchestration domain to trigger an execution zone to create, destroy or manage service instances. 
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Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONDeployService (domain orchestration ���� zone manager) 

BEHAVIOR 

An orchestration domain can use this function for explicitly deploying a number of instances in the 

execution zone. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName URI Name of the service 

ServiceParameters Blob Deployment parameters for the service 

DeployParameters Structured FUSION-aware deployment parameters 

Timeout Time Maximum amount of time for deploying the services 

RETURN VALUES 

Name Type Description 

Status Int Return code 

InstanceIDs [FUSIONID] List of the service instance IDs of the newly created instances 

 

Service Lifecycle Management Interface 

FUNCTION NAME 

FUSIONTerminateServiceInstance (domain orchestration ���� zone manager) 

BEHAVIOR 

With this function, the orchestration domain can explicitly terminate particular instances. Note that 

alternative functions will also be possible: reducing the available sessions, etc. 

PROPERTIES & PARAMETERS 

Name Type Description 

InstanceID URI Name of the service 

Timeout Time Maximum amount of time for terminating the sessions 

RETURN VALUES 

Name Type Description 

Status Int Return code 

 

6.4.1.3 Monitoring 

With these functions, an orchestration domain can explicitly query an execution zone for the status 

of particular services and the availability of the execution zone resources. 
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Service Monitoring Interface 

FUNCTION NAME 

FUSIONGetServiceInformation (domain orchestration ���� zone manager) 

BEHAVIOR 

Retrieve aggregated monitoring information for a particular service type 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName FUSIONID Name of the service 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Information Structured The requested information 

 

Resource Monitoring Interface 

FUNCTION NAME 

FUSIONGetZoneInformation (domain orchestration ���� zone manager) 

BEHAVIOR 

Retrieve aggregated available information about the execution zone 

PROPERTIES & PARAMETERS 

Name Type Description 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Information Structured The requested information 

 

6.4.2 Routing management interface 

This interface between the Zone gateway and the FUSION Service Routers is discussed in Deliverable 

4.1. 

6.4.3 Service management interface 

This section covers how a FUSION service can interact with a zone manager.  

6.4.3.1 Service lifecycle management 

These functions have already been described in Section 4.5.1. 
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6.4.3.2 Service monitoring 

With this function, a zone manager can explicitly request particular monitoring and health 

information for a service instance. 

Service Monitoring Interface 

FUNCTION NAME 

FUSIONGetServiceInformation (zone manager ���� FUSION service) 

BEHAVIOR 

Request particular status information from a service instance 

PROPERTIES & PARAMETERS 

Name Type Description 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Information Structured The requested information 

 

6.4.4 Data centre management interface 

This section covers the bidirectional interface between a zone manager and its underlying DC 

abstraction layer for managing services and resources.  

6.4.4.1 Service DC environment 

The data centre abstraction layer is responsible for managing an encapsulating environment in which 

FUSION services can be deployed and managed by a zone manager. 
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Data Centre Management Interface 

FUNCTION NAME 

FUSIONDCPrepareServiceEnvironment (zone manager ���� DC agent) 

BEHAVIOR 

This function enables a zone manager to create and prepare an environment for a particular service 

to be deployed. This can range from physical to virtualized environments, consisting of a particular 

amount of resources that are allocated for that service. 

PROPERTIES & PARAMETERS 

Name Type Description 

ServiceName FUSIONID Name of the service 

EnvParameters Structured Environment parameters (type, resources, VM location, etc.) 

RETURN VALUES 

Name Type Description 

Status Int Return code 

EnvironmentID FUSIONID Reference to the newly created DC environment 

 

Data Centre Management Interface 

FUNCTION NAME 

FUSIONDCResetServiceEnvironment (zone manager ���� DC agent) 

BEHAVIOR 

This function enables a zone manager to reset an existing service environment, allowing to quickly 

recycle the environment for another service deployment. 

PROPERTIES & PARAMETERS 

Name Type Description 

EnvironmentID FUSIONID Reference to the environment 

RETURN VALUES 

Name Type Description 

Status Int Return code 
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Data Centre Management Interface 

FUNCTION NAME 

FUSIONDCTerminateServiceEnvironment (zone manager ���� DC agent) 

BEHAVIOR 

This function enables a zone manager to clean up and terminate the enclosing environment that was 

used for hosting a FUSION service. It is assumed that the FUSION service was already stopped 

beforehand. 

PROPERTIES & PARAMETERS 

Name Type Description 

EnvironmentID FUSIONID Reference to the environment 

RETURN VALUES 

Name Type Description 

Status Int Return code 

 

6.4.4.2 Monitoring 

Being able to monitor both the individual service environments as well as the overall DC resources is 

crucial for guaranteeing a proper operation of an execution zone to be able to host FUSION services 

with the appropriate QoS levels. This includes both enabling specific monitoring tools as well as 

retrieving the resulting monitoring information from the underlying system. 

 

Data Centre Monitoring Interface 

FUNCTION NAME 

FUSIONDCGetInformation (zone manager ���� DC agent) 

BEHAVIOR 

Request specific monitoring information for the underlying data centre. 

PROPERTIES & PARAMETERS 

Name Type Description 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Information Structured The requested information 
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Data Centre Monitoring Interface 

FUNCTION NAME 

FUSIONDCGetEnvironmentInformation (zone manager ���� DC agent) 

BEHAVIOR 

Request specific monitoring information for a particular service environment. 

PROPERTIES & PARAMETERS 

Name Type Description 

EnvironmentID FUSIONID Reference to the environment 

Category Enum Specific subset of information 

RETURN VALUES 

Name Type Description 

Status Int Return code 

Information Structured The requested information 

 

Data Centre Monitoring Interface 

FUNCTION NAME 

FUSIONDCEnvironmentEnableProbe (zone manager ���� DC agent) 

BEHAVIOR 

Enable a particular monitoring probe for a specific FUSION service environment. 

PROPERTIES & PARAMETERS 

Name Type Description 

EnvironmentID FUSIONID Reference to the environment 

Probe Enum Select a particular type of probe 

ProbeParameters Structured Configuration parameters for the probe 

RETURN VALUES 

Name Type Description 

Status Int Return code 

ProbeID FUSIONID Reference to the newly created probe 
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Data Centre Monitoring Interface 

FUNCTION NAME 

FUSIONDCEnvironmentDisableProbe (zone manager ���� DC agent) 

BEHAVIOR 

Disable a particular monitoring probe for a specific FUSION service environment. 

PROPERTIES & PARAMETERS 

Name Type Description 

EnvironmentID FUSIONID Reference to the environment 

ProbeID FUSIONID Reference to a particular type of probe 

RETURN VALUES 

Name Type Description 

Status Int Return code 

 

6.4.4.3 Security interface 

The security aspects of all these interfaces and components will be tackled in Deliverable D3.2. 
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7. INITIAL SERVICE PROVISIONING ALGORITHMS 

7.1 Usage patterns 

The orchestration layer is responsible for the deployment of service instances across execution 

zones. Deploying an instance comes at a cost. It is therefore important to take into account the 

forecasted service usage patterns. 

Energy consumption imposes a significant cost for data centres, but much of that energy is used to 

maintain excess service capacity during periods of predictably low load. On the other hand, there are 

also significant costs to dynamically adjust the number of active servers. These costs come in terms 

of the engineering challenges, as well as the latency, energy and wear-and-tear costs of the actual 

‘switching’ operation. The value of dynamic resizing is highly dependent on statistics of the workload 

process. [WLCW12] 

There are two factors of the workload that provide dynamic resizing potential savings: 

1) Non-stationarities at slow time-scale, e.g. diurnal workload variations, peak-to-mean ratio 

2) Stochastic variabilities at a fast time-scale, e.g. the burstiness of request arrivals 

While one might expect that increased burstiness provides increased opportunities for dynamic 

resizing, it turns out the burstiness at the fast time-scale actually reduces the potential cost savings 

achievable via dynamic resizing. The reason is that dynamic resizing necessarily happens at the slow 

time-scale, and so the increased burstiness at the fast time-scale actually results in the SLA constraint 

requiring more servers at the slow time-scale due to the possibility of a large burst occurring. 

Second, it turns out the impact of the SLA can be quite different depending on whether the arrival 

process is heavy- or light-tailed. In particular, as the SLA becomes more strict, the cost savings 

possible via dynamic resizing under heavy-tailed arrivals decreases quickly; however, the cost  

savings possible via dynamic resizing under light-tailed workloads is unchanged. 

7.1.1 Service popularity 

The popularity of a service can be defined as the fraction of all user requests during a given time 

frame. Historically, the popularity distribution of items has often been modelled to follow a power 

law: when the items are ranked according to their popularity, the number of requests for the n-th 

item is proportional to 
�

��
. In a strict sense, only when α = 1, the power law can also be referred to as 

Zipf’s law. In many cases, researchers apply however the term ‘Zipf law’ for coefficients α smaller 

than, but close to 1.  If α < 1, the distribution has an infinite tail. The closer α is to 1 (while still being 

smaller than 1), the more heavy-tailed the distribution is. This means that there are many items with 

almost equal (low) popularity at the tail of the distribution. 

Table 1 provides an overview of the values for the parameter α that have been discovered by other 

researchers, for various content and service types. Most work has focused on the popularity of 

content, such as viewing statistics of user-generated videos on YouTube, broadcast TV channels or 

torrents. Considerably less research is available with measurements of the popularity of web-based 

services. Besides web service popularity, we have added numbers on the distribution of the number 

of mobile app downloads to Table 1.  

Table 1  Distribution of various content and service types. 

Service/Content type Distribution [parameters] 
Long tail 

observed? 
Reference 

User-generated content 

• YouTube 

 

Zipf [0.8] 

 

yes 

 

[CKRA07] 
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• DailyMotion 

Zipf [0.56] 

Gamma [k=0.51, lambda=6700]  

Weibull [k=0.44, theta = 23300) 

Zipf [0.88] 

yes 

yes 

yes 

 

[GALM07] 

[CDL07] 

[CDL07] 

[CKOS11] 

Video On Demand 
Zipf [0.65 – 1] 

Zipf [0.5] for top 100; then Zipf [ 1.2]  

yes 

yes 

[YZZZ06] 

[CKOS11] 

Live Event Broadcast 

• TV channel 

• user generated 

 

2-mode Zipf [coefficients not reported] 

lognormal [µ = 1.03; σ = 1.045] 

 

yes 

yes 

 

[SCC13] 

[SAG11] 

Torrents 

• Demonoid 

• PirateBay 

 

Zipf [0.82] 

Zipf [0.75] 

 

no 

not reported 

 

[FRSS12] 

[FRSS12] 

Web services Zipf for top 318 yes [JTPS13] 

Mobile apps downloads 

• iPad 

• iPhone 

 

Zipf [0.903] 

Zipf [0.944] 

 

not reported 

not reported 

 

[GT12] 

[GT12] 

 

As shown in Table 1, many researchers have indeed discovered a power law distribution with a 

coefficient depending on the actual content or service type being requested, but in general between 

0.6 and 0.9.  

Nevertheless, in many cases the power law overestimates the popularity of lower ranked items. This 

effect is referred to as the ‘long tail’: there are many items with very low popularity. The effect is 

better observed in large collections with items that are very specialized or only of local interest. For 

example in YouTube, many videos will only be of interest to friends of the uploader, will be in a 

particular language or treat a very specialized subject that is only of interest to a niche group.  

The long tail effect has been observed by many researchers: after an initial top-X of the most popular 

videos, the tail decreases tremendously. A more accurate modeling is therefore to use the 

concatenation of two Zipf curves (2-mode Zipf [CKOS11, SCC13]), a log-normal distribution [SAG11] 

or Weibull and Gamma distributions [CDL07]. 

The main conclusion to draw is that the long or heavy-tail of service popularity could be a strong 

challenger for the scalability of FUSION. A rapid, on-demand service instantiation mechanism will be 

needed. 

7.1.2 Geographic locality 

Service popularity may vary with the geographical location of the users accessing these services. The 

underlying reasons can be cultural, linguistic, or sharing with friends and family which in a large 

majority live close to each other on a global scale. 

In [SDJS10], the sharing of data between geographically distributed clients was observed in traces of 

the Live Messenger and Live Mesh applications. Live Messenger is an instant messaging application, 

and Live Mesh provides a number of communication and collaboration features, such as file sharing 

and synchronization. The traces covered all users and devices worldwide that accessed the service. 

To estimate the client location, the IP-address was mapped on geographical coordinates by the 

commercial Quova IP Geo-Location database.  The authors have calculated for each observed item 
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the centroid on the globe and analyzed the distance of each user to this centroid. The results are 

presented in Figure 48. 

 

Figure 48: Sharing of data between geographically distributed clients [SDJS10] 

 

As can be derived from this graph, more than 50 % of the items have a distance of 0, meaning that 

the items are not shared, or are shared between users whose IP addresses map to the same 

geographic location. Owing to the nature of the analyzed service, it is perhaps not surprising that 

large amounts of sharing happens between very distant clients, such as corporate branches in 

different nations. The authors suggest placing data closest to those who use it most heavily, rather 

than just placing it close to some particular client that accesses the data. 

In [KCLC13], the authors analyze 2 billion geo-tagged tweets. Dividing the globe into squares of 10 km 

by 10 km, the similarity of hashtag sharing between two regions drops quickly with the distance. 

Specifically, around 50% of hashtags derive at least 50% of their postings from a single location. 

In [HKKT12], the authors highlight that the views of niche videos on YouTube (with less than 1000 

views) are geographically highly concentrated: 80% of all views of these niche videos come from less 

than 15 countries. This concentration effect remains relatively strong for all videos up to 100M views 

and gradually fades out as the popularity of videos increases, to reach an almost uniform global 

distribution over all countries for extremely popular videos (more than 10
7
 views).  

The main conclusion to draw is that a geographic diversity in content consumption has been 

confirmed by many authors. Further research is required, but one might expect the same might be 

true for services, e.g. based on cultural or linguistic preferences, social media sharing, etc. 

7.1.3 Variations over time 

YouTube video popularity evolves over time, exhibiting a peak of interest which then fades away 

[BSW12]. Videos often experience a peak in their number of views when they are featured on 

popular websites or when they become viral and spread on online social networks. An important 

consideration is that the spatial properties of the views also change in time. On average, a video 

tends to become popular in a single region (‘focus region’), and receives only a few views from other 

regions. Immediately after the peak, the fraction of views from the focus region goes down, and 

interest shifts to other locations. Finally, view traffic shifts back to the focus location. Social networks 

have are an important driving factor behind this pattern. 

On shorter terms, the expected diurnal patterns have been observed for VOD in [YZZZ06]. Within one 

single day, the number of users drops gradually during the early morning (12 AM – 7 AM) and the 

afternoon (2PM – 5PM), while it climbs up to a peak when users are in noon break or after work 

(6PM-9PM). On a weekly basis, the authors observe the highest peaks in the weekend. 
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The popularity distribution versus age was also studied by [CKRA07]. Excluding the very new videos, 

user’s preference seems to be relatively insensitive to video’s age. While user’s interests is video-age 

insensitive on a gross scale, the videos that are requested the most on any given day seem to be 

recent ones.  A revival-of-the-dead effect, where old videos are suddenly brought up to the top of 

the chart, was not strongly observed by the authors. 

The popularity of blog articles steadily drops [JKHS12] over time. However, external references by 

other bloggers may incur a sudden surge of the number of views, even if the reference article is a 

few days old. 

Strong diurnal effects in the number of arrivals per unit of time have been observed in Hotmail, a 

large e-mail service running tens of thousands of servers. The authors in [WLCW12] used traces from 

8 such servers over a 48-hour period. The peak-to-mean ratio is 1.64.  

In [SCC13], they observed points of big rises and falls with respect to the number of requests for live 

streamed sports events. There are also some unexpected bursts that may occur during the course of 

the game due to some unexpected game activities that develop. An example is given of a sudden 

increase in the number of Taiwanese viewers for an American sports event because one Taiwanese 

player had been in the center of public attention in his domestic country. 

Conclusions: 

• diurnal patterns should be taken into account to predict demand 

• in general, popularity decreases over time (except for the most popular services) 

• the effect of external references (social media recommendation, reviews, blogs) should not be 

underestimated 

7.1.4 Session length (Service holding time) 

Each user entering the system will hold the allocated resources for some time. The expected holding 

time per service session determines the time window that should be taken into account when 

allocating resources for a new request, and also reflects the pace at which new network paths may 

need to be configured (if resource allocation is done on a per-session basis). 

Multimedia services, which are the main focus of FUSION, are typically characterized by a longer 

holding time: users watch TV for a longer time, or are continuously connected to the cloud for the 

analysis of their video stream. In FUSION, we specifically target long-lived multimedia sessions. The 

session duration for MMORPG was monitored in [SDM09].  The mean session duration value is about 

55 minutes. Interestingly, about 24% of the sessions lasted 2 minutes or less, while the longest 

session lasted almost 10 hours. A high percentage of short sessions can be explained by the 

phenomenon of alts: alternative or secondary characters that are used as an extension of the main 

character’s capacity to circumvent the game limitations. 

The authors in [BRC09] evaluated the usage pattern of four online social network sites. All four OSN 

sites exhibit a consistent heavy-tailed pattern in their session duration, however the media session 

durations vary across OSNs, from 3 seconds up to 13.4 minutes.  

Also the session length for videos in a VOD system is quite short: 52.6 % of all requests have less than 

10 minutes of session length, and 70 % of sessions are terminated in the first 20 minutes [YZZZ06]. 

The dominance of short videos is confirmed in [VPG05], showing that 20-40% of a movie session is 

terminated in less than 10 minutes. In [CSK11], the holding time distribution indicates that the mean 

holding time is 22.50 minutes. 

The authors in [SAG11] suggest a lognormal distribution for the duration of viewing session to live 

streaming of user-generated content. The authors evaluate both short (< 20 min) and long viewing 
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sessions and observe in both cases that the distribution of the viewing time is skewed towards very 

short durations: around 70% of all sessions have durations under 200 seconds in both classes. 

Since watching video requires the user’s full attention, this may impact the session length 

distribution. Listening to music usually does not require constant attention from users. The average 

duration of a listening session in Spotify is varying with the time of day. The length of sessions started 

on a desktop peaks in the morning (400 min) and decreases almost monotonously until late night 

(100 min). The authors attribute this effect to the users that launch Spotify to have background 

music at work. On the other hand, mobile sessions are much shorter than desktop sessions. Although 

the number of mobile sessions is much larger than the number of desktop sessions, the media 

mobile session length exhibits small variation over time (10-20 min). This suggests that the usage 

pattern is dramatically different between desktop and mobile users. 

Conclusions: 

• session time can be highly variable, and application-specific 

• session time tends to be short 

• mobile may even result in shorter sessions (e.g. while commuting, quick checking, …) 

7.1.5 User arrival rate 

The strong daily patterns lead to significant variations in the arrival rate of users. Typically, the 

session arrival rate will be lower at night, and peak during the day. Moreover, for example in Spotify, 

the authors observe that the arrival rate peaks for mobile sessions peaks one hour before the 

desktop sessions, owing to the commuting of its users [ZKI13]. The authors propose to model the 

arrival rate as a non-homogenous Poisson process, which is a Poisson process with its rate parameter 

λ changing over time. The expected number of events between time a and time b is: 

��,� = 	 �
��
�
�

� . The authors model constant values of λ in 10-min intervals. The percentage of 

exponential interarrivals and independent sessions arrivals is above 95 % for both the desktop and 

mobile datasets of all countries observed. 

The session arrival time during live streaming of user-generated content can be fitted by a uniform 

curve, despite a slight tendency for users to arrive closer to the beginning of a transmission [SAG11]. 

In [CSK11], the authors show a good consistency between their measurements and a Poisson 

distribution, for both VOD and VOIP calls. The average arrival rate for VOD is 14.09 requests per 

second and 26.27 connections per second for VOIP calls. 

In [CKRA07], the authors’ measurement traces only indicate the number of requests for a video per 

day. Assuming that requests are exponentially distributed over the day, they conclude that roughly 

95% of the videos are requested once every 10 minutes or longer. 

The main conclusion is that user demand can be modeled as a non-homogeneous Poisson process, 

with the parameter lambda following diurnal patterns and perhaps with its mean decreasing over 

time. 

7.2 Inter-zone service placement 

7.2.1 Introduction 

This section presents a first modelling and simulation of the problem of server placement between 

execution zones, focusing on the issue of resource allocation within execution zones when there is 

competition for resources from multiple applications each being managed by an orchestrator. A 

detailed algorithm specification together with a set of evaluation results from simulations will be 

presented in deliverable D3.2. 
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Execution zones can be deployed in various places throughout the Internet: in network-edge points 

of presence close to users; collocated with routers within an ISP’s network; in local data-centres 

owned and operated by ISPs; and in traditional data-centres and service farms operated by cloud and 

service providers. 

Unfortunately, some of the smaller execution zones will be unable to provide the essentially 

boundless elasticity that purpose-built data centres can provide. This means that, in many instances, 

there can be more requests for resources within any given execution zone than there are resources 

available. In these cases, resource allocation mechanisms that deal with service contention will be 

required. When securing resources from execution zones, ochestrators acting on behalf of 

applications will need to balance the benefit that these resources bring to the QoE of their users with 

the costs that they need to pay to the computation resource providers. We propose resource 

allocation algorithms to address efficiency, contention and oversubscription, and evaluate them 

through simulation. 

7.2.2 Architecture 

 

Figure 49: Service provisioning architecture for atomic services in the decentralized cloud 

    

We assume the existence of a large number of execution zones (EZ), that is, cloud endpoints where 

computational capabilities are offered to applications. Resources in each EZ are managed by a zone 

manager. Applications can deploy services (i.e. self-contained application logic components) on these 

execution zones under the direction of a FUSION orchestrator that implements the appropriate cost-

benefit tradeoffs for that application. The orchestrators acting on behalf of their applications then 

compete with one another for resources on the execution zones. 

Rather than relying on a centralized resource allocator to grant orchestrators access to EZ resources, 

we allow each execution zone to individually perform resource allocation decisions. There is a rich 

literature on how to solve this problem [KRAU02] [LAND09] [WANG05]; in this section we propose 

the use of a market system to allow execution zones to allocate resources to those applications that 

value them the most (see [FU03] [GUPT02] [SHNE05] [WALD92]). Due to their price self-

determination property, we use auctions to allocate resources to applications (see [CHUN05] 

[FELD05] [KARV06] [LEVI08] [STILL10] [ZAMA11] for other examples of auctions used for resource 

allocation in grid, peer-to-peer and cloud computing). In essence, our architecture allows each 

orchestrator to bid for resources on each execution zone according to its individual policies, and 

implementing its own tradeoff between user satisfaction and infrastructure cost. 
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We will focus our attention on the dynamic use of execution zone resources by orchestrators. To 

simplify the resource allocation tasks of execution zones, we will assume that each EZ will offer a 

discrete number of identical service slots which can be univocally assigned to a single application. In 

addition to its scalability benefits, this simplifies the resource modelling in execution zones and 

allows a more straightforward calculation of the tradeoffs involved. 

With these definitions our proposed architecture can be explained as follows (see Figure 49). 

Application users generate service queries, which are directed to the appropriate execution zones by 

an appropriate mechanism (e.g. differentiated DNS resolution). The zone managers in those zones 

load balance these requests between the available service slots that the relevant application has 

deployed in the EZ. The application achieves this through its orchestrator, that sends bids to 

execution zones specifying the number of service slots desired and the bid amount that they are 

willing to pay per service slots. The zone manager then allocates its available service slots by running 

a multi-item Vickrey auction [VICK61]; the top bidding orchestrator bids are hence selected for 

deployment. 

7.2.3  Problem definition 

We assume that the orchestrator can determine, by external means, the total user demand 

associated with a given execution zone. The question becomes: given the bidding profile at every EZ, 

for how many instances of the service should the orchestrator bid, and at what price? 

Each orchestrator ��  will bid for a number of service instances in each EZ, according to the estimated 

demand consumption and a predefined notion of service quality. The problem for each manager ��  is 

to determine the number of service instances �� that it will bid for within execution zone �, as well 

as the bid price �� that it must offer in order to ensure that it can satisfy its customer demand with 

probability �. 

Assume that each execution zone ��  can offer up to ��  service instances to managers (see  Table 2), 

and that each orchestrator �� sends ��� bids to ��, each at a value ���. The execution zone receives 

these bids and ranks them in increasing order of value, and the top ��  win a resource unit. The 

payment that will be applied to each winning orchestrator �� is the sum of the top ��� losing 

bids,where ��� is the number of bids that �� won. 

To allow a manager to estimate the expected outcome of placing a given number of bids at a given 

price with an execution zone, it needs to estimate the number of competing bids it will encounter. 

Thus, rather than the total number �� of bids on ��, we are interested in the number of bids in ��  
with which the bids of �� must compete – which involves subtracting from �� those bids sent by �� 

itself.  

��   Total number of bids that execution zone ��  receives  

��
�
   Total number of bids that execution zone ��  receives that compete with those 

placed by ��  

��    Total number of resource units that execution zone ��  offers  

���   Total number of bids that orchestrator �� sends to execution zone ��   

���   Monetary value for each bid that orchestrator �� sends to execution zone ��   

���   Number of bids that �� wins on ��   

��
�

����   Probability density function of bid values received by auctioneer ��   

���

����   Cumulative distribution function of bid values received by auctioneer ��   
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�
��
��

����   Probability density function of the �-th order statistic of the bid values received by 

auctioneer ��   

�
��
��

����   Cumulative distribution function of the �-th order statistic of the bid values 

received by auctioneer ��   

Table 2: Auction-based resource allocation model notation 

A detailed problem formulation, mathematical modelling and algorithm description will be presented 

in deliverable D3.2. 

7.2.4 Evaluation 

We evaluate our proposed architecture through simulation. We built a custom simulator where 

execution zones and orchestrators are implemented as parallel threads. The simulation proceeds by 

epochs, with one epoch consisting of a bidding phase in which orchestrators decide, in parallel, how 

many bids to submit to each execution zone and at what valuation. These values are accumulated at 

each execution zone, and when all required values are available, the system moves on to the 

allocation phase. At this point, execution zones independently perform resource allocation on the 

available bids, and calculate the QoS experienced by the users of each service in their designated 

population. Statistics are then gathered, and made available to orchestrators so that they can adapt 

their bidding behaviour. We now further explain our simulation setup and results. 

7.2.4.1 Simulator setup 

Each application and zone manager in our simulator is implemented as an independent thread and 

triggered by means of a thread pool [GARG02]. Simulation progresses by discrete time steps denoted 

as epochs. Each epoch consists of two steps, each one implemented as a map/reduce operation; 

simulation state is synchronized after each reduce step. We now broadly explain the two main steps 

of each simulation epoch by focusing in turn on the execution zones and the orchestrators (see 

Figure 50). The first step, denoted the execution step, implements functionality to allow execution 

zones to receive bids from all orchestrators, choose the winning set of bids, and calculate the QoS 

experienced by application users. Each EZ can then report to each orchestrator the total number of 

bids �� that it received, the total number of service slots ��  that it offers, and the distribution 

���

���� of its received bid values.  

   

Figure 50: Simulator architecture 

In order to capture the different incentives behind service deployment decisions, we consider three 

different kinds of orchestrators, which we denote as QoS-sensitive, Price-sensitive and Background. 

Whereas the first two aim to arrive at an optimal QoS/cost tradeoff, Background orchestrators 
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Zone 

Manager 1
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Manager 1
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Manager 1

Zone 

Manager 1 …
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generate bids and bid values as drawn from static probability distributions. Hence, Background helps 

us model additional execution zone load that is non-adaptive. Regarding QoS-sensitive and Price-

sensitive orchestrators, the only difference is the chosen value of �. For QoS-sensitive orchestrators 

we use � = 60000; for Price-sensitive orchestrators we use � = 10000. These values are arbitrary 

and only chosen to differentiate between these two categories of orchestrators. 

We parameterize our simulations in terms of the variables presented in Table 3. In order to reliably 

test the statistical properties of our simulation, we organize our simulations into runs, with each run 

consisting of a set of N_Replicas simulation replicas. For each one of these replicas we use the same 

values for al parameters and report the averages. For each simulation run, we choose a combination 

of individual values of N_EZ, N_App_QoS, N_App_Price, N_App_BG and N_Srv_Slots; the rest of the 

parameters are kept unchanged for all simulation runs. The values used for these variables are 

shown in the third column of Table 3. In order to represent the probability densities ���

����, we 

used histograms that split the entire range for ��� into N_Hist_Bins equally-sized bins. Further 

simulation details and experimental results will be presented in deliverable D3.2. 

  

N_EZ Total number of execution zones  5 

N_App_QoS Total number of QoS-sensitive apps (� = 60000) 10, 50 

N_App_Price Total number of Price-sensitive apps (� = 10000) 10, 50 

N_App_BG Total number of Background apps  50, 100 

N_Srv_Slots Total number of service slots ��  in an execution zone  90, 180 

Mu_Max 

Mu_Min 

Maximum and minimum values for the rate at which a given 

execution zone can process user requests  

2.5 

1.5 

Lambda _Max 

Lambda _Min 

Maximum and minimum values for the rate at which user requests 

for a given application are generated at a given execution zone  

1.5 

0.5 

N_Iterations Maximum number of epochs for a given simulation replica  100 

N_App_Threads Number of orchestrator threads in the bid planning pool  450 

N_EZ_Threads Number of orchestrator threads in the execution pool  450 

N_Replicas Number of simulation replicas per simulation run  20 

N_Hist_Bins Number of histogram bins to represent ���

����  255 

Table 3: Simulation parameters 

7.2.5 Related work 

There is a large body of work on auction-based resource allocation. An example of this is CompuP2P 

[GUPT02], a system that implements an open market for peer resources quantised into different 

markets. Each market is managed by a particular peer through a dynamic hash table (DHT). Pricing is 

arrived at by using a Vickrey auction [VICK61] as an information-revelation mechanism, and the 

system is designed to be robust in the presence of self-interested decisions of resource providers and 

users. 

Another auction-based system is Spawn [WALD92], a distributed CPU resource allocation problem is 

solved by using an open market. Money in this virtual economy becomes an abstract form of priority, 

so that better funded processes can obtain correspondingly better access to the computing 

infrastructure than others. The system uses sealed bid, second price auctions, and each of the 
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economic actors taking part in the economy for CPU cycles maintains a resource manager that 

manages auctions and assigns CPU time slices accordingly. 

A shortcoming of typical combinatorial auctions is that they can be very computationally intensive, 

and thus might involve large delays [CRAM06]. In [FELD05], each participant allocates its finite 

budget to bid on a given resource set, and receives a proportion of each resource commensurate 

with the proportion of its bid with the bids of other participants; this same technique was later on 

proposed by [LEVI08] as a replacement for the unchoking policy of BitTorrent. Another auction-based 

resource management implementation is Mirage [CHUN05], where combinatorial auctions using a 

centralised virtual currency environment are used for sensor network testbed resource allocation. 

A first set of server placement techniques has been developed in the context of data centres. Their 

key rationale is to minimise data centre energy consumption by maximising the utilisation of the 

running servers through efficient placement of the work load (in the form of virtual machines). 

Various decision parameters have been studied, such as the workload of the virtual machines or their 

memory consumption [JANG11] or the type of resources requested [STILL10]. However, these 

algorithms are not directly applicable to our problem definition, as in the data centre case, the effect 

of the underlying physical network topology is negligible: inside data centres, dedicated high-

bandwidth and low-latency links can be used. Another contribution in this direction is [KARV06], 

where the authors propose a centralised service placement algorithm requiring information on the 

entire network topology. The algorithm maximises the satisfied demand and minimises the number 

of placement changes. In [ADAM07], the authors propose a decentralised variant of this algorithm. 

However, neither of these two algorithms takes into account latency or any other characteristics of 

the underlying physical network. A dynamic and latency-aware service placement algorithm for 

assigning resources to services is presented in [FAMA09]. The servers are connected via a peer-to-

peer overlay technology. Each server is responsible for both taking part in the management tasks and 

running a subset of the available services. All the technologies discussed so far require a mapping of 

individual workloads (services) to a set of servers. Within the field of distributed systems, the replica 

placement problem has also been studied extensively, i.e. where to cache or replicate popular data 

objects [ZAMA11]. A model taking QoS into consideration is presented in [CHEN09]. Parameters like 

storage cost, update cost and access cost of data replication are used for the replica placement. 

Being NP-complete, two heuristic algorithms are presented for the model. For tree networks, two 

new policies for QoS-aware placement are presented in [BENO08].  
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8. CONCLUSIONS 

This document describes the initial requirements, design and interface protocols for realizing 

distributed service orchestration and management of demanding interactive composite service 

graphs across a heterogeneous set of execution zones. The scope of this deliverable thus describes in 

detail the initial work of the FUSION consortium regarding the orchestration, execution and service 

layers of the FUSION architecture. 

In the first year of the project, we have been focussing on identifying the key high-level use case 

requirements and how these translate into lower-level requirements that impact the FUSION 

architecture and design decisions with respect to service description, orchestration as well as service 

execution management within a FUSION orchestration domain. In this process, we also focused on 

defining the overall boundaries and constraints regarding the flexibility and dynamicity of FUSION 

with respect to the targeted use cases.  

Regarding the service layer, we started evaluating and describing in detail the various service graphs 

and how this may impact service instantiation and service selection, as well as defining initial 

requirements for describing these services to enable automated deployment and management by 

FUSION. We developed the concept of service sessions and session slots for efficiently and scalably 

managing service sessions across service instances. We also started investigating late binding 

techniques as a way for improving inter-service communication and identified an initial set of key 

service management interfaces for managing the lifecycle and heterogeneous resource utilization of 

FUSION application services. 

At the FUSION domain orchestration layer, we created an initial high-level design, identified the key 

orchestration functions, and started working out sequence diagrams and interaction patterns for 

these functions. We also proposed a four-step placement strategy and corresponding evaluator 

services for managing service placement in a distributed and flexible manner, enabling to take into 

account very service-specific details on the one hand, and allowing the possibility of resource 

abstraction at the execution zone level on the other hand. We also started working on several other 

functions like service deployment and inter-domain orchestration, and provided an initial set of key 

interfaces towards the various components and actors that will interact with a FUSION domain 

orchestrator. 

At the FUSION execution layer, we focussed on what the key functions of a zone manager are and 

how a FUSION execution zone can be deployed on top of execution data centre management 

platforms. We initially envision an overlay approach that allows most of the FUSION zone manager 

functionality to be deployed on different types of data centre management platforms using a data 

centre abstraction layer for translating FUSION service state and resource management and 

monitoring functions into whatever language the underlying infrastructure supports. Within the 

scope of the project, we also envision using light-weight virtualization and deployment techniques as 

well as support for heterogeneous hardware for efficiently deploying and running services on top of 

sets of heterogeneous FUSION execution zones. We also provided an initial set of key management 

interfaces for the zone manager for managing FUSION services on physical execution resources. 

Lastly, we provided initial algorithms regarding service provisioning. More specifically, we started 

identifying key usage patterns and how it may impact service scaling and deployment. We also 

described an auctioning algorithm for efficient resource utilization of execution zones with very 

limited resources. 

In the second year of the project, we will refine the initial high-level designs and interfaces for the 

orchestration and execution layer and work out an initial design on top of an existing data centre 

management platform like OpenStack. We will continue working on the placement and deployment 

strategies of various composite service graphs and validate them using the selected use case 

scenarios and initial demonstrator setup as described in Deliverable D5.1.   
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