

Future Service Oriented Networks

www.fusion-project.eu

© Copyright 2013 FUSION Consortium

University College London, UK (UCL)

Alcatel-Lucent Bell NV, Belgium (ALUB)

Telekomunikacja Polska S.A., Poland (TPSA)

Spinor GmbH, Germany (SPINOR)

iMinds vzw, Belgium (IMINDS)

Project funded by the European Union under the

Information and Communication Technologies FP7 Cooperation Programme

Grant Agreement number 318205

Deliverable D5.2

Final use case design, report on prototype deployment and

initial evaluation results

Public report, Version 1.1, 19 December 2014

Authors

UCL David Griffin, Miguel Rio, Khoa Phan

ALUB Frederik Vandeputte, Luc Vermoesen

TPSA Dariusz Bursztynowski

SPINOR Michael Franke, Mahy Aly, Folker Schamel

IMINDS Pieter Simoens, Lander Van Herzeele, Piet Smet

Reviewers Pieter Simoens, Dariusz Bursztynowski, Frederik Vandeputte, Folker Schamel

Abstract

This deliverable describes the final application prototype use case design, reports on the current

status of the prototype deployment and reports initial evaluation results. The four applications

prototype are the media services Electronic Program Guide (EPG), thin client 3D game, media

dashboard, together with the technical utility streamer service. The applications prototype designs,

implementations and their use case scenarios are described, including the current status of their

implementations, followed by an analysis of how the prototypes demonstrate and validate specific

features of the FUSION prototype. The FUSION features demonstrated by the applications

prototypes can be classified in deployment, service selection, scaling and load balancing. The status

of the current prototype for FUSION-enabled services and host environment deployment and its

initial deployment on the virtual wall at the iMinds facilities is reported. The status report is followed

at a first evaluation of this FUSION prototype.

Keywords FUSION, use cases, requirements, demonstrator, testbeds, test scenarios

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 2 of 50

Copyright © FUSION Consortium, 2014

Revision history

Date Editor Status Version Changes

08/09/2014 Folker Schamel Skeleton 0.1 Initial ToC

15/09/2014 Folker Schamel Improved

Skeleton

0.2 Revised ToC

10/10/2014 Michael Franke Improved

Skeleton

0.3 Consolidated input

05/11/2014 Michael Franke ALUB, IMINDS,

SPINOR major

input

0.4 Consolidated

02/12/2014 Folker Schamel Most

contributions

included

0.8 Review and rework overall

document

02/12/2014 Folker Schamel Most

contributions

included

0.9 Rework overall document and

resolve formatting problems

05/12/2014 Folker Schamel Most parts

complete

0.10 Add various missing paragraphs

15/12/2014 Folker Schamel Most parts

complete

0.11 Integrate changes and general

reworking

19/12/2014 Folker Schamel Completed 1.0 Integrated various review

changes

19/12/2014 Folker Schamel Completed 1.1 Additional review and

additional sections about

service selection and placement

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 3 of 50

Copyright © FUSION Consortium, 2014

GLOSSARY OF ACRONYMS

4G Fourth generation of mobile phone mobile communication technology standards

API Application Program Interface

AR Augmented reality

BGP Border Gateway Protocol

BW Bandwidth

C++ Object Oriented Programming Language

CPU Central Processing Unit

Ctl Control

DC Data Center

DNS Domain Name System

DRAM Dynamic Random Access Memory

EC2 Amazon Elastic Compute Cloud

EPG Electronic Program Guide

EZ FUSION Execution Zone

FUSION Future Service Oriented Networks

GB Gigabytes

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

HDD Hard Disk Drive

HTTP HyperText Transport Protocol

IP Internet Protocol

ISP Internet Service Provider

MOSCOW MUST, SHOULD, COULD, WON'T

MPLS Multi Protocol Label Switching

NFS Network File System

PaaS Platform as a Service

PoC Proof of Concept

QoS Quality of Service

REST Representational state transfer

RFB Remote Frame Buffer

RGBA32 Red Green Blue Alpha 32 bit color space representation

RPC Remote Procedure Call

Rsp Response

RTP Real-time Transport Protocol

RTSP Real-time Streaming Protocol

RTT Round-Trip Time

SaaS Software as a Service

SMART Specific, measurable, attainable, relevant and time-bound

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 4 of 50

Copyright © FUSION Consortium, 2014

SSD Solid State Drive

SSH Secure Shell

Tb/s Terrabit per Second

TOSCA OASIS Topology and Orchestration Specification for Cloud Applications

UI User Interface

VLAN Virtual Local Area Network

VM Virtual Machine

VNC Virtual Network Computing

VoD Video on Demand

VPN Virtual Private Network

WAN Wide Area Network

Wifi WLAN products based on the IEEE 802.11 standards

WLAN Wireless local area network

XML Extensible Markup Language

YUV4MPEG2 Uncompressed frames of YCbCr video formatted as YCbCr 4:2:0

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 5 of 50

Copyright © FUSION Consortium, 2014

EXECUTIVE SUMMARY

This deliverable describes the final application prototype use case design, reports on the current

status of the prototype deployment and reports initial evaluation results.

The four applications prototypes are the media services Electronic Program Guide (EPG), thin client

3D game, media dashboard, together with the technical utility streamer service. This document

describes the functionality, architecture and implementation of these applications prototypes and

their current implementation status.

The features demonstrated by the applications prototypes can be classified in deployment of

composite services and deployment taking into account metric performance and server capabilities,

service selection based both on network and service metrics, deployment and scaling of resource

demanding personalized services with tight QoS constraints, load balancing and service scaling for

efficient server resource usage, faster deployment and dynamic inter-zone scaling based on changing

demand patterns and network conditions.

The status of the current prototype for FUSION-enabled services and host environment deployment

and its initial deployment on the virtual wall at the iMinds facilities is reported.

The status report is followed at a first evaluation of this FUSION prototype, which at this stage

focusses on a functional analysis of service registration and automatic deployment, session slot

service scaling, and load-aware service scaling and resolving.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 6 of 50

Copyright © FUSION Consortium, 2014

TABLE OF CONTENTS

GLOSSARY OF ACRONYMS .. 3

EXECUTIVE SUMMARY .. 5

TABLE OF CONTENTS .. 6

1. SCOPE OF THIS DELIVERABLE ... 8

2. APPLICATION PROTOTYPE DESIGN AND IMPLEMENTATION ... 8

2.1 Summary of FUSION functionalities demonstrated in each application prototypes............................. 8
2.2 Advanced EPG .. 9

2.2.1 2D EPG Service ... 9
2.2.2 Functionality .. 10
2.2.3 Architecture ... 10

2.2.3.1 EPG rendering service component ... 11
2.2.3.2 Streamer service component ... 12
2.2.3.3 Evaluator service .. 12

2.2.4 Implementation ... 12
2.2.5 Integration ... 14
2.2.6 Future implementations .. 14

2.3 Thin client 3D game ... 15
2.3.1 Functionality .. 16
2.3.2 Architecture ... 16
2.3.3 Implementation ... 18
2.3.4 Current status and next steps .. 19

2.4 Dashboard prototype .. 20
2.4.1 Functionality .. 21
2.4.2 Architecture ... 21
2.4.3 Implementation ... 22
2.4.4 Current status and next steps .. 23

3. FUSION PROTOTYPE USE CASE SCENARIOS .. 24

3.1 Summary of use case scenario characteristics .. 24
3.1.1 Composite service deployment .. 25
3.1.2 Service deployment taking into account metric performance and server capabilities (e.g. the edge)

 25
3.1.3 Service selection based both on network and service metrics... 26
3.1.4 Platform for deployment and scaling of resource demanding personalized services with tight QoS

constraints on a highly distributed infrastructure .. 27
3.1.5 Load balancing and service scaling based on session slots enabling more efficient server resource

usage of media services .. 28
3.1.6 Faster deployment ... 29
3.1.7 Dynamic scaling based on changing demand patterns and network conditions 29

3.2 Service Registration and Automatic Deployment.. 30
3.2.1 Involved components, their functionalities and implementations .. 30
3.2.2 Means of verification ... 31

3.3 Composite services .. 31
3.3.1 Involved components, their functionalities and implementations .. 31
3.3.2 Means of verification ... 32

3.4 Service Placement Optimisation .. 32
3.4.1 Involved components, their functionalities and implementations .. 32
3.4.2 Means of verification ... 33

3.5 Session Slot Service Scaling ... 33
3.5.1 Involved components, their functionalities and implementations .. 33
3.5.2 Means of verification ... 34

3.6 Evaluator services .. 34

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 7 of 50

Copyright © FUSION Consortium, 2014

3.6.1 Involved components, their functionalities and implementations .. 34
3.6.2 Means of verification ... 35

3.7 Heterogeneous cloud environment... 35
3.7.1 Involved components, their functionalities and implementations .. 36
3.7.2 Means of verification ... 36

4. FIRST PROTOTYPE DEPLOYMENT ... 37

4.1 Virtual Wall Deployment Environment.. 37
4.1.1 Next steps .. 38

4.2 Orange Datacenter Deployment Environment .. 38
4.2.1 Current setting .. 38
4.2.2 Next steps .. 39

4.3 First prototypes of FUSION-enabled composite services .. 39
4.3.1 Next steps .. 40

4.4 Host environment deployment ... 40

5. FIRST PROTOTYPE EVALUATION .. 41

5.1 Service Registration and Automatic Deployment.. 41
5.1.1 Functional evaluation .. 42
5.1.2 Performance evaluation .. 45

5.2 Service resolution .. 47
5.3 Load-aware service scaling and resolution .. 48

5.3.1 Functional Evaluation .. 48
5.3.2 Performance Evaluation of current implementation ... 49
5.3.3 Future plans ... 49

6. REFERENCES.. 50

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 8 of 50

Copyright © FUSION Consortium, 2014

1. SCOPE OF THIS DELIVERABLE

2. APPLICATION PROTOTYPE DESIGN AND IMPLEMENTATION

Based on the analysis of use cases in D2.1 we have selected three application prototypes we are

implementing to analyse, validate and demonstrate the various features of FUSION. These

application prototypes are:

1. Advanced media services Electronic Program Guide (EPG), including a technical utility

streamer service

2. Thin client 3D game

3. Media dashboard

These use cases resemble real world use cases and concentrate on FUSION specific functionality.

Each of these use cases will use several functionalities that are provided by FUSION which either

enable this use case or simplify the development. The game and dashboard prototypes are

technically similar by being mainly different configuration of the same underlying prototype

implementation based on the commercial Shark 3D software of Spinor [SHARK3D].

2.1 Summary of FUSION functionalities demonstrated in each

application prototypes

The following table summarizes, which functionalities of the FUSION framework are demonstrated

with each use case. Compared to the table in section 3.1, which focuses on the innovation of the

different FUSION features, the following table focuses on mapping FUSION features to application

prototypes.

 Advanced EPG Thin client 3D game Dashboard

Service Session slots Yes
Yes, based on node-based factory

composition

Multi-service

configuration
Yes Yes, based on node-based composition

Static service graphs Simple graph

Dynamic service

graphs
Service Requests

Dashboard service

uses other services

for media input

Efficient

provisioning /

deployment

Docker containers

Evaluator services Simple evaluator Checking for GPU

Resource sharing
Shared videos (and

encoder)

Support for sharing GPU resources between

session

Multi user sessions No Yes No

Re-use of existing

software in FUSION

environment

Based on Vampire

framework
Based on the commercial Shark 3D software

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 9 of 50

Copyright © FUSION Consortium, 2014

The following sections describe the prototypes more in detail.

2.2 Advanced EPG

Video services are becoming increasingly personalised, especially with the massive introduction of

“second screen” or HUD applications. These applications complement the primary (television or

broadcast) streams with personalised information, either on secondary devices such as tablets and

smart phones, or overlaid on top of the main device. This personalized GUI will in the coming years

become increasingly important as advanced content navigation, target for infomercials and product

placement, and even to add social gaming aspects to the classic TV experience.

These advanced interactive user interfaces could be very fancy 2D or 3D graphical environments. This

will lead to massive amounts of potentially highly interactive video and graphics content that needs

to be generated or processed, and delivered to the end-user on-the-fly, which cannot easily be done

on devices with limited capabilities (e.g., a smart TV).

The role of FUSION for such application use case is to optimally take into account the various

resource requirements and constraints (both compute and networking) during deployment of new

instances as well as the optimal selection of an instance for a particular client.

2.2.1 2D EPG Service

For the first PoC implementation of this application use case, we implemented a basic 2D interactive

EPG that enables browsing through a number of dynamic or interactive video sources or static

pictures, and that can easily be extended towards integrating the output from other FUSION services

as well.

This EPG service is developed in the Vampire framework [FV09], a media processing framework

developed inside Bell Labs for quickly building media applications consisting of a number of reusable

media components, each of which can be mapped onto a number of application threads.

A snapshot of the basic EPG service is depicted in Figure 1.

Figure 1– Screenshot of a 2D EPG service prototype

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 10 of 50

Copyright © FUSION Consortium, 2014

2.2.2 Functionality

For the initial setup, we limited the EPG service to only consist of a fixed number of static input

streams, together with a series of static images. The end user can interact with the service either by

pressing key strokes or mouse swipes to manually browse through the video sources.

Alternatively, the user can also toggle the service to automatically scroll through all video sources.

We modified the implementation to support the basic raw video stream format as well as the RFB

[RT10] feedback protocol for handling all service communication as described in Deliverable

D5.1.

Using the underlying features of the Vampire framework, we reuse all input video sources across all

sessions using an internal Vampire multicast mechanism to significantly reduce the resource

requirements.

This service serves as an example of a personalized single-user streaming service, and can be used

both as an atomic service (consisting of only the rendering component) or as a service component in

a composite service (consisting of both a rendering and dedicated streamer component).

Regarding FUSION functionality, we implemented the following concepts in this first demonstrator

service:

• We implemented the service session slots concept, allowing a configurable number of

interactive sessions to be active at the same time;

• We implemented also the multiple service configuration concept, allowing multiple

parameterizable service configurations to be added and removed at runtime, sharing the same

set of session slots for optimal resource utilization. This allows to change the available parallel

sessions, the output resolution, the endpoint port and the frame rate at runtime.

• We encapsulate the service components into a lightweight Docker container for efficient

provisioning and deployment with minimal runtime overhead.

2.2.3 Architecture

This use case consists of one or two service components, namely the EPG rendering component and

optionally a generic streamer component. Additionally, we also implemented an initial corresponding

evaluator service associated with these service components.

The rendering component provides the core functionality of the EPG service and can be addressed

individually by either clients or other services. Default, the EPG rendering service used the raw

streaming format.

The streamer service component is a generic streamer component that currently takes in the raw

streaming protocol and produces an H.264 encoded video stream. Secondly, it can also forward the

incoming feedback stream to the connected service. Two key advantages of having a separate

generic streaming service component are:

• This streamer component can be mapped onto specialized hardware that is optimized for

efficient video encoding and streaming, such as GPUs or hardware encoders

• This enables to have more lightweight and specialized service components, not requiring the

connecting service components to all have direct access to such hardware environments or

having to implement such encoding capabilities internally. This can significantly improve

deployment and runtime efficiency.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 11 of 50

Copyright © FUSION Consortium, 2014

2.2.3.1 EPG rendering service component

The internal architecture of the EPG rendering service component is depicted in Figure 2. The key

component in the internal application graph is the session and configuration factory component, that

is able to automatically spawn a new session and service configuration specific graph on-the-fly that

will handle the specific client session for that specific service configuration.

A user making a service request opens a connection to the TCP port of the corresponding service

configuration (which is managed by FUSION orchestration and resolution layers). If there are still

session available, the factory will create a parameterized session graph, make all connections with

the various shared input videos, and passed the socket to the corresponding components. All this

complexity is abstracted via the Vampire framework. Note that the shared input videos are only

decoded once, and automatically multicasted via an internal shared memory Vampire protocol.

The available resource and service configuration session slots are all maintained at the session

factory component. When a user finally disconnects, the session graph is completely removed, the

session factor component is notified, which performs the necessary session accounting.

Using a Vampire-specific communication protocol, an external remote control management

application can both read out or modify the application properties. Key properties that are relevant

for FUSION include the available session slots, the service configurations and the service instantiation

parameters. Each of these can be monitored or modified at runtime. This allows an external wrapper

to monitor or even change the number of available session slots, add a new service configuration etc.

In a FUSION-agnostic manner.

For the interactive streaming protocol, we leveraged the raw streaming format as well as the RFB

format for the feedback channel. Unless one of the video sources originates from another FUSION

service, we do not require the FUSION client API for automatically connecting to the optimal

instance.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 12 of 50

Copyright © FUSION Consortium, 2014

Figure 2 – Software architecture of the multi-session multi-configuration enabled EPG service

2.2.3.2 Streamer service component

The internal architecture of the streamer service component is depicted in Figure 3. The overall

structure is quite similar to the EPG service component, and we used the same generic session

factory Vampire component for handling all session and multi-configuration related aspects.

For every new streamer session, a new internal pipeline and context is created for handling the

streaming session. Only at the time, the streamer session will open a connection to the upstream

service. The service name can be either a FUSION service name or an explicit URL. We implemented a

small FUSION-enabled API that will automatically detect whether the provided service name is a

FUSION name or URL and respond accordingly. In case it is a FUSION service name, the small library

will contact a FUSION service resolver for finding the endpoint of an optimal instance of that service.

Once resolved, the library function will automatically try to open a socket connection to that

instance.

Figure 3 – Software architecture of the multi-session multi-configuration enabled streamer service

2.2.3.3 Evaluator service

As part of this EPG service, we also provided an initial evaluator service. Initially, this evaluator

service is mainly to validate the FUSION workflow during service deployment, but in the last year of

the project, we will extend and leverage this service for assessing what environment and execution

zone is most suited for a running the EPG (and streaming) service.

2.2.4 Implementation

We have implemented the various software components using our Vampire framework [FV09],

which enables quickly developing media processing applications on multi-core architectures. We

implemented the service architecture, the functionality and the basic protocols described above in a

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 13 of 50

Copyright © FUSION Consortium, 2014

number of software components. Although the service components do incorporate concepts such as

service sessions, session slots and multiple service configurations, these were implemented in a

FUSION agnostic manner.

All FUSION-specific communication was provided in an external simply Python wrapper that

communicates with the zone manager and the ETCD key value store. This Python wrapper regularly

inspects the Vampire application using a dedicated Vampire protocol regarding the available session

slots, and pushes changes to the zone manager. Vice versa, it monitors the request for adding a new

service configuration from the ETCD data store and subsequently triggers the Vampire application to

add and configure a new service configuration on a new port using the same custom Vampire

protocol. As such, the application itself can be designed independent of the FUSION protocol.

For streaming video and the feedback channel, we implemented the raw protocol described in

Deliverable D5.1.

The application binary, wrapper script, static input videos, images and other artefacts subsequently

were wrapped into a Docker container image using a simple Dockerfile, enabling easy and fast

deployment of the service on any Docker-enabled machine. We developed such container for both

the EPG rendering and streamer service components.

For reusability and fast provisioning, we made optimal usage of the image stacking concept in

Docker, where different layers of containers can be layered on top of each other and shared in a

hierarchical manner. As such the base layers (e.g., consisting of the basic libraries) can be shared by

many Docker images, and only the application-specific binaries, libraries and artefacts need to be

provided in a separate layer. When subsequently provisioning a new machine with a new Docker

container, only the upper file system layers need to fetched remotely, and not the entire VM image.

As an example, the current full hierarchical structure of all container image layers as currently used

for the FUSION prototype and demonstrator components is shown in Figure 4.

Figure 4 – Docker image layers with relative layer sizes

As can be seen, all FUSION orchestration prototype components (i.e., zone manager, DCA, domain

orchestrator and resolver) are built on top of the same Ubuntu and Flask library layers. As a result,

the size of the application-specific layer is extremely small. Similarly for the application services and

evaluator service, by carefully reusing particular libraries as much as possible by putting them in

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 14 of 50

Copyright © FUSION Consortium, 2014

common image layers, it is possible to keep the sizes of the application-specific layers to a bare

minimum. For example, image the EPG service is currently already provisioned in some execution

zone. In case the virtual desktop service needs to be provisioned and deployed, only the last layer

(i.e., 2.1 MB) needs to be fetched remotely during provisioning, instead of several hundreds of

megabytes or gigabytes of data, significantly reducing both the provisioning delay, storage

requirements as well as network bandwidth requirements.

Note that for the classical VM-based deployment, we simply wrap the Docker container in a VM,

which is something that the DCA layer can very easily can do automatically on any IaaS cloud

infrastructure, by injecting the Docker container in an upfront prepared and platform optimized VM.

2.2.5 Integration

Figure 5 depicts how the EPG rendering service is currently integrated in the FUSION demonstrator;

note that the integration of the streamer service component is identical. As mentioned in the

previous section, the wrapper script is responsible for all FUSION-specific interactions as well as

starting the EPG application. The entire service is wrapped in a Docker container, which the DCA

layer knows how to efficiently deploy on the underlying architecture.

Figure 5 – Integration of the EPG service in FUSION

Apart from the Docker container, we also provided a corresponding evaluator service (which is also

wrapped in a Docker container), as well as an initial simple manifest which is compatible with the

current version of the prototype.

As mentioned earlier, the service currently supports session slots, service instantiation parameters as

well as multiple dynamic service configurations.

2.2.6 Future implementations

In the final year of the project, we may integrate a second EPG service, such as for example a 3D EPG

service as depicted in Figure 6, which has more demanding resource requirements (e.g., GPU

availability, etc.), and for which the thin-client approach is even more crucial, especially if such EPG

services also should be easily supported on TVs, without being constrained by the limited capabilities

of the device with the lowest capabilities.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 15 of 50

Copyright © FUSION Consortium, 2014

Figure 6– 3D cube EPG prototype

2.3 Thin client 3D game

A thin client game is an interactive software where the rendering of the 3D scenes is not done on the

end user’s device but on a separate server from where it will be delivered as a video stream. The end

users only launches a viewer application that decompresses the video stream and presents it to the

user. Additionally the viewer has functionality to capture input and pass it back to the rendering

server. All in all this approach is comparable to remote desktop applications like the RDP or VNC

protocol.

It is a more and more interesting for application developers, since applications that need high

computational power can also be accessed on weak (e.g. mobile) devices.

The thin client 3D game will be implemented in two steps: in a first step the game will be

implemented as a single user application where world simulation and 3D rendering are performed by

one single service. This step is done as a preparation of the second step, where the application will

be extended to multi-user sessions (i.e. multiplayer games). For this the world simulation and the

rendering are split into two separate services. The reason is that this approach will be more common

in real applications: it is easier to scale the applications to more users if the world simulation is done

in a separate service because the calculation power needed for the 3D rendering can be offloaded to

separate hardware. Since the world simulation has to be done centralized (except some more

sophisticated approaches taken for example in massively multiplayer games), but rendering can be

decentralized, this is the optimal architecture for scaling the number of users.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 16 of 50

Copyright © FUSION Consortium, 2014

2.3.1 Functionality

The first step of the demonstrator can be interpreted as a single user service. Since the video will be

streamed to the end user device this will be a streaming service. The second step of the

demonstrator will implement a multiplayer game and can therefore be seen as a multi user

streaming service.

To perform the rendering it is necessary to have access to the GPU. This is a non-standard

requirement towards the execution zone which has to be checked whether it is met by using the

evaluator services.

At the testing site probably only one GPU powered server will be available, which has to be selected

by the evaluator service. This means that for a multiplayer game (step 2) with two users both have to

be rendered on the same hardware. The world simulation will run on separate hardware decoupled

from the rendering services. Since each user’s rendering output can be seen as independent from the

other’s rendering output, the rendering could be realized as two independent rendering services or

as one rendering services with two different session slots, which use resource sharing (e.g. the 3d

model data).

Compared to the EPG service the network distance between streaming source and consumer is more

relevant, because in contrast to the EPG service the game client is interactive. Buffering of video

streams is therefore not possible.

This demonstrator will largely depend on the utilization of the existing Shark 3D software [SHARK3D].

Therefore this demonstrator can also be seen as a practical test to measure how much changes and

adjustments have to be applied to existing software to enable it as a FUSION service. Compared to

the EPG service the code base that has to be prepared for FUSION is larger and may therefore

provide a valid scenario to test, which efforts have to be made to enable existing software for

FUSION.

To summarize this demonstrator will make use of the following functionalities provided by FUSION:

• Evaluator services

• Low latency streaming services

• Session slots with resource sharing

• Single and multi-user services

• Integration of existing professional software into FUSION

• Hardware access (GPU)

2.3.2 Architecture

For this demonstrator the Shark 3D software [SHARK3D] will be packaged into docker containers and

deployed the same way as for the EPG use case. From a FUSION perspective the Shark 3D containers

will behave the same way as the EPG containers, so the existing infrastructure can be used.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 17 of 50

Copyright © FUSION Consortium, 2014

The commercial Shark 3D Software [SHARK3D] used for creating the game prototype

Inside the containers, a connection between the Shark 3D software and the FUSION API has to be

established. Two possible solutions are either to extend the Shark 3D software to directly call the

REST API which means to add HTTP functionality to the software. This approach may be efficient

regarding runtime behaviour. Another approach would be to package a separate bridging service

inside the same container, which communicates to the Shark 3D software on the one hand and the

FUSION API on the other hand. This service could be implemented in Python. The Shark 3D software

already has an interface for network communication (Telnet based), so this approach would merely

mean write a translator from custom Shark 3D protocol to FUSION REST calls.

Since the Python libraries to communicate with FUSION are already available from the EPG use case

and there are Python implementations available for the Shark 3D protocol as well, this can be

implemented with very few efforts. The runtime efficiency will not be as good as for the integrated

approach, but since calls to the FUSION API are for management purposes only (no streaming data

delivered), the overhead will be small. Therefore this solution is currently preferred and will be

implemented.

For the first step of the demonstrator the world simulation and the rendering will be performed in

one monolithic service. This service will be connected to the thin client application on the user

device.

In the second step the service will be split up into two services, a simulation and a rendering service.

The rendering services will connect to a single simulation session which may run on the same

execution zone or on another one. Since only one execution zone with GPU will be available, the

rendering service will only be instantiated once with multiple session slots.

Docker container

Shark 3D application

FUSION APIPython Protocol Bridge

REST

Shark 3D protocol

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 18 of 50

Copyright © FUSION Consortium, 2014

The connections between rendering service instance and world simulation instance will be using the

already existing Shark 3D network protocol, the connections between rendering service instance and

thin clients will be realized using a streaming protocol and backwards input channel.

2.3.3 Implementation

For packaging and deployment a docker / vampire setup as described in the EPG use case will be

used. The FUSION API will be realized as REST service as described in the EPG use case.

The Shark 3D software is a compiled C++ software consisting of several modules that are linked into

one Linux executable using static linking [SHARK3D]. The configuration of each module is done with

separate configuration files, which make it possible to start and configure a module as needed.

Therefore the one single executable can be used both for the world simulation and the rendering

service. The different behaviour is achieved by different configurations. This also enables easier

deployment if pre-distribution is chosen, because only differences in configuration have to be

transmitted as deltas to the execution zones.

Execution zone (w/o GPU access)

Docker container

Shark 3D world simulation

Thin client A

End user device A

Execution zone (with GPU access)

Docker container

Shark 3D Renderer

1

Docker container

GPU eval.

service

FUSION API

1 2 n

2

Thin client A

End user device A

Hardware layer

Container

Service specific software

n Service slot

Low bandwidth application specific protocol (e.g. world sync)

High bandwidth application specific protocol (e.g. video / input)

FUSION REST protocol

Session 1 Session 2
Shared

Resources

n

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 19 of 50

Copyright © FUSION Consortium, 2014

The GPU evaluation service however may be also be based on the current Shark 3D software, since

this software can evaluate best which capabilities are needed for the rendering (shader model etc.).

It has to be decided whether the GPU evaluation service is also a full version of the Shark 3D

software with just another configuration or a separately built software derived from the existing one.

Probably, because auf the necessity to keep the evaluators very lightweight, it may be necessary to

strip all unneeded modules from the existing software and create a very thin separate software for

the evaluation service. This approach is currently planned.

The protocol for connecting the thin clients to the render services will be based on the VNC / RFB

protocols. These have the advantage, that applications implementing these protocols are already

existing, meaning that for testing purposes an existing application can be used to implement the

missing functionality at the renderer. One disadvantage is that the available compressions for

standard RFB are optimized for remote desktop connections, meaning that they work best if large

areas of the transmitted image remain static and only small areas change. For this use case this may

however not be the case. It will therefore probably be necessary to extend the existing protocols by

additional compression algorithms. For the FUSION port for example, Shark 3D was prepared to

render compressed video streams as 3D textures on the one hand and to render output which can

then be encoded as video stream on the other hand. This functionality is provided by the

enhancement for the graphics back ends in combination with an integration of the FFMPEG library

[FFM14]. The advantage of the library is that it provides support for different state of the art

compression algorithms.

Another architectural change in the Shark 3D engine, which would also be necessary for any other

software package using a similar architecture, is the abstraction of the input to also accept input that

is transmitted via network, for example by using the input events provided by the RFB.

One challenge here is the relatively complex handling of input. Since keyboard details are different

for example on different operating systems (e.g. compare the Apple keyboard with a Windows

keyboard) there has to be some abstraction and mappings between keys. The RFB already offers

some rules for that, but they are not always as clear as they are expected to be.

When using advanced compression algorithms the standard VNC clients will no longer be suitable as

thin client application. Two options are possible and can be implemented without big effort to

enable demonstration of the described functionality. Either the existing client developed by ALUB for

the EPG use case is extended or a proxy application is installed which locally converts the

compressed video stream into uncompressed video and forwards this to the VNC client. Input data

from the client is just passed through.

The connection between the world simulation service and the renderers will be realized by using the

existing Shark 3D network protocol, the communication will be transparent to FUSION.

2.3.4 Current status and next steps

The following table summarizes the current status of the prototype implementation plus planned

next steps.

Application

prototype

feature

Description
Accomplishments

so far
Next steps

Session slots

Session producer for handling and

managing service session requests on

runtime side and corresponding editor

extensions

Successful

production of

multiple session

instantiations

Prototype specific

definitions of

shared and

session-specific

data

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 20 of 50

Copyright © FUSION Consortium, 2014

World simulation

deployment

Includes reactivation of Spinor's Linux

port of the Shark 3D world simulation

and integration into Docker

Successful

compilation of

most modules.

Compilation of

remaining

modules.

Packaging of

binaries and

creation of

resource

packages.

Renderer

deployment

Includes reactivation of Spinor's Linux

port of the Shark 3D renderer and

integration into docker

First tests with

Ubuntu and

Docker and GPU

access

Renderer code

porting,

compilation,

packaging of

binaries and

creation of

resource

packages,

especially shader

code generation

Input channel
Keyboard, mouse based on VNC

protocol

Basic

implementation

of VNC protocol

Connecting input

data to session

instances

Output video

channels

Successful

rendering into

uncompressed

image sequence

-

Output video

channel

compression

Based on ffmpeg.

Successful

rendering into

compressed video

data stream

Streaming

compressed video

data into network

connections

Single user game

application

Setup game application where game

world simulation and 3D rendering are

performed by one single service

-
Game prototype

programming

Multi-user game

sessions
Setup multi-player game application -

Game prototype

programming

2.4 Dashboard prototype

The dashboard use case is based on gaming console main menus, which are a merger of EPGs and 3D

games. Real time data from different sources is merged as video streams or interactive video streams

(see Thin client 3D game use case) into an interactive world, where the user can move around and

consume the data. It therefore integrates the both use cases described before in one more advanced

and challenging application.

To create a representative example different service types will be integrated to one single dashboard

application. The combination of the services will take place on demand, that means that the service

graph will not be deployed statically but will be created depending on the user input at runtime.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 21 of 50

Copyright © FUSION Consortium, 2014

2.4.1 Functionality

Since the Dashboard prototype is a mixture or EPG and Thin client 3D game, it combines the

functionality of both use cases.

The most important additional feature is the dynamic combination of different services. The

dashboard service as main service presents to the users the output of other services, like video

streaming and chat service.

As with the Thin 3D Client the rendering will be performed on GPU, so also here the evaluator

services are necessary. Since the graphics backend for both the Thin Client 3D Game and the

Dashboard service are the same, it is possible to re-use the existing evaluator services. This can be

seen as a general good practice in FUSION environment since the outcomes of evaluator service

invocations may be cached and re-using existing evaluator services means re-using existing evaluator

results and therefore reduces the number of necessary evaluator runs.

• Multi-user service

• Low latency streaming services

• Re-use of existing evaluator services

• Dynamic service graphs

• Session slots with resource sharing

• Hardware access (GPU)

2.4.2 Architecture

Main feature of this use case is the dynamic connection and disconnection of other services. This

integration of other services can occur at different places, either at the world simulation service or at

the rendering service. For video streams rendered into the graphic output it is for example not

necessary to route them through the world simulation service since only output is affected. This

connection can be made during runtime and can even be different for different users. This may for

example be wanted to display different contents to different users which are in the same session

(e.g. localized video streams or commercials).

Other services like the chat service rely on a centralized structure and may therefore be routed

through the world simulation service.

The video streaming services need higher bandwidth connection than the world simulation server, so

it may be necessary, to place them nearer to the rendering services than the world simulation. This

may also be checked by a separate evaluation service.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 22 of 50

Copyright © FUSION Consortium, 2014

2.4.3 Implementation

This use case extends the previous described use cases by a chat service and the combination of

world simulation and streaming services. Since the chat service is only there for demonstration

Execution zone (w/o GPU access)

Docker container

Video streaming

service A

Thin client A

End user device A

Execution zone (with GPU access)

Docker container

Shark 3D Renderer

1

Docker container

GPU eval.

service

FUSION API

2

Thin client A

End user device A

Hardware layer

Container

Service specific software

n Service slot

Low bandwidth application specific protocol (e.g. world sync)

High bandwidth application specific protocol (e.g. video / input)

FUSION REST protocol

Session 1 Session 2
Shared

Resources

n

Execution zone (w/o GPU access)

Docker container

Shark 3D world simulation

1 2 n

Docker container

Video streaming

service B

Execution zone (w/o GPU access)

A B

A B

Docker container

Chat service

1

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 23 of 50

Copyright © FUSION Consortium, 2014

reasons, a simple implementation using Python will be deployed using the Docker environment

described before. For simplicity, the communication between world simulation service and chat

service will take place using a rest protocol. Inside the world simulation service, a Python bridge will

translate between Shark 3D application and the chat service API.

The combination of the video streaming services and the world simulation service in the renderer

services will be done the following way: The world simulation service provides the data to update the

current world state in the renderers. This state includes a plane or other surface containing a video

texture. The video texture is defined by a resource identifier, which will be a FUSION service

identifier. This identifier is used at the rendering service to query the actual service instance

providing the stream from FUSION. This query can be session specific, so that different users can get

different streams.

The video stream is decoded using the FFMPEG library and the content is copied into the texture

buffer each frame. This texture buffer is then used for the rendering of the scene. This way the same

scene used by different users will receive different contents, depending on the session slots.

For real world applications this architecture can be used to reduce required network bandwidth

because the video streaming services can be places nearby the renderers. The possibly far distance

connection between renderer and world simulation only needs low bandwidth because of the highly

optimized application specific geometry-based synchronization protocol.

2.4.4 Current status and next steps

The dashboard is based mainly on the same components as the game application. Therefore the

following table only includes modules which are specifically for the dashboard.

Application

prototype

feature

Description
Accomplishments

so far
Next steps

Output channel
Keyboard, mouse based on VNC

protocol
-

Implementation

and connection

with session

instances

Input video

channel

Implementation of communication

channels (video and input) between

service components implemented by

different FUSION partners

Streaming of

uncompressed

video stream into

network

communication

channels

-

Input video

channel

decompression

Based on ffmpeg. - Implementation.

Connection with

EPG prototype

Connection of the EPG prototype with

the dashboard prototype

Statically

configured

connections

established

Dynamically

controlled

connections

Single-user

dashboard
 -

Dashboard

programming

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 24 of 50

Copyright © FUSION Consortium, 2014

Service

connections

Dashboard connecting to media

sources
-

Implementation

of data

connections and

integration into

prototype setup

Multi-user

support
 -

Implementation

of user sessions

Chat -

Implementation

of chatting

functionality

3. FUSION PROTOTYPE USE CASE SCENARIOS

While the previous chapter describes the application prototypes itself, this chapter describes how

the integration of the FUSION component prototypes with the application prototypes are used to

test, validate and demonstrate different use cases.

3.1 Summary of use case scenario characteristics

Compared to the table in section 2.1, which focusses on the relationship of FUSION features to the

application prototype, the following table focusses on the characteristics of the FUSION features

which are tested, validated and demonstrated with the FUSION prototype together with the

application prototypes.

FUSION Feature Characteristic beyond state of the art

Static service graph deployment

Deployment decision depends on the

requirements of multiple related software

components based on evaluator services

Dynamic service instance graph deployment

using FUSION service selection

Implicit formation of service graphs without

requiring complex coordination or

specification

Better resource utilization through multi-

configuration service components

Deployment of multi-configuration service

component which can be part of multiple

service (instance) graphs at instantiation

time

Satisfying service specific requirements in

heterogeneous environments

Evaluator services for taking into account

static and dynamic service requirements as

well as infrastructure capabilities at the

service layer

Service selection based both on network

and service metrics

Service resolution is able to select between

service replicas running in different

locations according to current server

capacity and network performance

characteristics, matching service-specific

performance targets

Service deployment on third-party More flexibility: Closer to the user, higher

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 25 of 50

Copyright © FUSION Consortium, 2014

hardware QoS

Hardware abstraction for service providers
Light-weight containers for service instance

isolation

Resource sharing of multi-media service

instances

Multiple service instances of complex 3d

applications sharing data structures

Fast deployment
Reduce startup-time from 10s or 100s of

seconds to the order of seconds

Dynamic inter-zone scaling

Dynamic inter-zone scaling based on

changing demand patterns and network

conditions

3.1.1 Composite service deployment

For demonstrating how FUSION will handle the deployment and management of composite services

as well as composite service instances we will focus on three main cases, on which we will shortly

elaborate:

• Deploying a static service graph;

• Dynamic service instance graph deployment using FUSION service selection;

• Better resource utilization through multi-configuration service components.

The first case deals with deploying a static service graph within a FUSION execution zone. In this case,

the graph is fully specified statically within the service manifest, and it is up to FUSION to most

optimally deploy this in a zone. We will for now focus on deploying such graphs within a single

execution zone. However, the same strategy can later be extended at the domain level to deploy

such composite services across multiple execution zones.

Key aspects to demonstrate and evaluate concerns the role of the evaluator services in case of static

service graphs, the configuration of the various service component instances at deployment time as

well as the sharing of service component instances across multiple service graphs (possibly coming

from different composite service types).

In the second case, the service graph is not statically described in a manifest, but dynamically and

more implicitly formed and changed at run time. This allows for more flexible distributed composite

service, without requiring complex coordination or specification. We will demonstrate how FUSION

service selection can be used for very quickly and efficiently creating or changing the composition of

service instances to form more complex dynamic (distributed) service instance graphs.

In the last case, we will demonstrate the advantages of multi-configuration service components. A

multi-configuration service component is a service component that can be part of multiple and

potentially independent service (instance) graphs at instantiation time.

We will demonstrate how the concept of session slots as well as flexible session-slot based service

scaling can be leveraged for sharing service components across multiple composite services, thereby

further increasing the resource sharing capabilities.

3.1.2 Service deployment taking into account metric performance and

server capabilities (e.g. the edge)

Another feature to demonstrate is the effectiveness of the FUSION architecture for efficiently

deploying demanding services with specific requirements in a distributed heterogeneous

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 26 of 50

Copyright © FUSION Consortium, 2014

environment. We will demonstrate and evaluate the concept of evaluator services for taking into

account static and dynamic service requirements as well as infrastructure capabilities at the service

layer.

An example of a static service requirement includes the availability of a GPU that has the appropriate

features. The evaluator service can very efficiently and in very high detail provide the necessary

feedback via a simple score whether a particular execution environment is effective (and cost-

efficient) or not.

An example of a more dynamic service requirement includes the overall QoS that a particular service

experiences when running in a particular execution environment. Execution zones that oversubscribe

their available resources too aggressively, resulting in poor QoS for the deployed services, should be

penalized so that future service deployments may consider other execution zones or deployment

environments. We will illustrate how evaluator services could leverage historical data for making

better decisions for deploying particular services on particular environments.

At the platform layer, we will demonstrate the effectiveness of a heterogeneous cloud platform for

efficiently deploying the services on the available infrastructure, taking into account application

characteristics as well as platform capabilities for providing significantly better QoS and efficiency

when deploying demanding or sensitive applications on an unknown (cloud) execution environment.

3.1.3 Service selection based both on network and service metrics

FUSION service resolution is able to resolve queries for a service type to return the “best” running

instance of that service for the endpoint requesting the service. “Best” means according to a

combination of server and network metrics while respecting policies of the ISP deploying the service

resolution plane. Network metrics include latency and throughput, service metrics are abstracted as

session slots, network policies are related to the cost of forwarding traffic over inter-domain links.

Optimal selection depends on service-type and a service-specific utility function will be defined per

service to guide the service resolver decisions.

A network performance database in each service resolution domain will be populated by various

means – local domain network topology and monitoring data; metrics provided by specific remote

service resolution domains, e.g. using ALTO network and cost map information; global network

measurement data provided by systems such as RIPE Atlas; peer-to-peer monitoring information, e.g.

to specific target execution zones in remote domains; QoE feedback from users from prior service

invocations. The network performance data will be used by service resolvers to identify which

execution zones, hosting a service instance, meet the target performance metrics for that service

type.

Available session slots per service type will be advertised by execution zones to local service

resolvers, together with additional service information, such as the histogram of service duration

times. Service resolvers will use current session slot availability to determine where capacity exists to

serve a query. Resolvers will aim to balance load between execution zones and the histogram of

service execution duration will be used for this purpose.

Finally, for inter-domain service resolution to execution zones in remote service resolution domains

the inter-domain links will have different costs according to the business relationships with adjacent

ASes depending on whether they are customer-provider or peering relationships. Service resolution

will aim to minimize the costs of traffic on inter-domain links while meeting network performance

targets and available server capacity constraints.

Service resolution based purely on network performance metrics will not take into account the

dynamics of available server capacity, potentially resulting in blocked service requests by the

selected execution zone. Resolution based purely on available server capacity and service duration

statistics will ensure service requests can be processed by the selected execution zone but network

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 27 of 50

Copyright © FUSION Consortium, 2014

performance metrics (latency, throughput, etc.) to that destination may not be suitable for the

service type. Resolution based on both network and service metrics will allow load to be balanced

between execution zones while meeting the target network performance for the service and

minimizing the cost of inter-domain traffic.

3.1.4 Platform for deployment and scaling of resource demanding

personalized services with tight QoS constraints on a highly

distributed infrastructure

The demonstrator will also act as a personalized service with QoS requirements. This will be

implemented as a game prototype service with a thin client approach. The server-side rendering and

compression will require tight QoS to enable interactivity for the user.

This gaming prototype will be an interactive 3D world, where the user can walk around, and interact

with in-game objects. There will be a screen or advertising pillar that streams video data from other

services into the 3D world. This ensures very close similarity with the interactive dashboard, so that

the advantages of FUSION for both variants can be demonstrated within a single application.

There are several technologies and advantages of the FUSION project, that can be demonstrated by

enabling the demonstrator to support this variant:

First of all, it can be demonstrated that FUSION enables service providers to publish demanding

services without the need of installing costly hardware by themselves, but the operation of the

datacenters and management of the resources is handled by FUSION or the infrastructure providers

respectively. While similar approaches are already possible with cloud computing, the instantiation

of the service near the user, which enables higher QoS, is not yet possible with today's cloud

computing: large cloud computing providers like Amazon have large datacenters at fixed positions,

which normally causes a high network distance to the end user while smaller cloud providers, which

may have installations nearer to the user, only support smaller regions.

The second FUSION feature that can be demonstrated is that a homogenous environment is

provided, independent where the service is running. For the demonstrator this will be a Linux x86

environment. When the service is bundled for this environment it can be started on any hardware

managed by FUSION. To isolate the services from each other, a lightweight container approach using

the Docker software will be used. This ensures that the services can not interfere, while on the other

hand reducing the required disk space overhead compared to virtual machines.

For Docker containers it is possible – similar to some VM implementations – to create basic

containers that contain the main environment which are per-distributed. The actual containers later

only require the distribution of the container deltas, which can be very small, depending on the

service. With this technology the time overhead for moving a certain container to a target machine

can be reduced to a minimum.

This is a strong argument for using the Linux operating system, since Docker requires it. Another plus

for Linux is the easier management of licenses, especially with regards to automatic downloading

and starting of the containers, which would raise licensing issues when using other – probably

commercial – operating systems.

The demonstrator will therefore be packaged as a Docker container and uploaded to a server

accessible by FUSION. After registering the service it can be deployed by FUSION to a specific

hardware and started.

To find the optimal position to start a service the FUSION architecture uses the concept of

demonstrator services which are run in advance to test the available hardware whether it is feasible

for a given service. For the demonstrator with the server-side rendering there are two features that

must be fulfilled by the underlying hardware: first of all, GPU access must be granted. Second the

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 28 of 50

Copyright © FUSION Consortium, 2014

network distance to the streaming client must be as short as possible to reduce the time between

input and feedback. Both of these restrictions can be tested by the evaluator services.

To report the feedback whether GPU is available and the network quality is sufficient for the

streaming of the rendered content, an interface to the management layer is required. This is not only

restricted to the evaluator services but also can be used by the application itself. These interfaces

widely replace static manifest files since they can dynamically calculate whether requirements are

met or not in contrast to fixed restrictions that have to be expressed in manifest files.

These management interfaces will communicate using a REST protocol, which makes it especially

easy for service provider to implement or adjust to their needs. For the implementation of the

demonstrator variants for example the logic handling the communication will be written in Python

with the option to change to a more efficient language if this would be necessary.

The management of different service instances and user management can be demonstrated with the

demonstrator in different ways: Either multiple players join the same session like in a classical multi

player game or it may be necessary to have separate sessions (if they both want to use it as a single

player game) but it may be still efficient to handle both within the same service instance. The

demonstrator will show the different approaches necessary to provide both functionalities.

By installing virtual screens in the game worlds, which display the content from a different service,

the demonstrator also proves the possibility of combining multiple services dynamically. This is for

example required by the dashboard use case, which combines multiple streams into one interactive

application.

3.1.5 Load balancing and service scaling based on session slots enabling

more efficient server resource usage of media services

Besides the better placement of services another advantage of FUSION is the better usage of

resources. The demonstrator will make use of the session slot mechanism to offer multiple session

slots to FUSION. With this technique, multiple users can connect to the same game rendering service

without knowing about each other, i.e. both sessions will be handled as single player games. The

advantage will be, that since both players play in similar worlds, the rendering service only has to

load the graphics data on the GPU and can use it for rendering of both scenes.

Depending on the size of the graphical assets, the client may also benefit from a shorter start-up time

of the service because if the service is already loading and has vacant slots available, starting the

service from the viewer's perspective is only connecting to the existing instance and loading and

probably decompressing the data into GPU memory is not required.

Precondition for this to work is that the service logic software supports multiple session slots in an

intelligent way. A simple method would always be to internally (inside the container) start a new

process. But in this case the resource sharing advantage would be lost. It is therefore necessary, that

the software is prepared to serve multiple incoming requests in parallel. Efforts have been taken to

prepare the Shark 3D engine for supporting multiple session slots, so that the demonstrator can

benefit from these advantages.

On the other hand the rendering service can only handle a certain number of clients connected

because, depending on the complexity of the scene and the underlying hardware, the rendering

takes some time. This hardware dependency is also a good example for the usage of evaluator

services and dynamic performance measurements as opposed to static manifests, because it allows a

more fine grained reaction on performance bottlenecks by adjusting the number of available session

slots.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 29 of 50

Copyright © FUSION Consortium, 2014

3.1.6 Faster deployment

One of the SMART objectives in FUSION is to reduce the start-up time for remotely executed service

component instances to within the order of seconds compared to today's equivalent operation of

instantiating a virtual machine in 10s to 100s of seconds.

This is important in the on-demand scenario, where services may have to be deployed on-demand in

a particular execution zone when a new service request is made by a user. For example, for the long-

tail of less popular services, it would be too expensive to deploy at least one instance of a particular

service in (almost) every execution zone close to every user. In such cases, instead of using a more

centralized service instance that has worse latency characteristics, it could be beneficial to deploy a

new instance on-the-fly close to the requesting user. This of course requires deployment delays in the

order of seconds instead of minutes.

Another motivation is to be able to cope with flash crowds, where suddenly huge amounts of

requests are made for particular services within a region. In such case, being able to very quickly

scale out or deploy new instances will significantly improve perceived QoE. As we target mostly long-

running demanding services in FUSION where each service instance only can handle a discrete

amount of sessions in parallel, FUSION must provide efficient deployment and scaling mechanisms to

effectively deal with such dynamic behavior.

As such, we will demonstrate the benefits of using lightweight containers both for packaging as well

as deploying FUSION services, and compare this with classical VM-based service deployment. We will

demonstrate the two main benefits:

• Very fast deployment, in the order of seconds (at most);

• Faster (pre)provisioning due to shareable container image layers.

3.1.7 Dynamic scaling based on changing demand patterns and network

conditions

Current cloud scaling approaches only take into account load in the local data center to up- or

downscale new service instances. In contrast, the FUSION project targets a global optimization of

service deployment across a multitude of distributed, possibly smaller, execution platforms that

interfaces with a network-aware service request resolution.

The contribution of the FUSION project in this domain is that we demonstrate the benefits of

interfacing between the service orchestration layer and the service request resolution layer. The

FUSION orchestration layer is responsible for monitoring the current service load and taking the

necessary deployment and scaling decisions, given network layer conditions and policies. Especially

the placement of multimedia services can have a significant impact on the network, as these services

are long-lived and involve high-bandwidth streams. Conversely, service placement of interactive

services like gaming require low latency to the users. This can only be achieved by deploying services

at multiple places in the network.

The interfacing between the orchestration and service resolution layer involves two scaling

mechanisms:

• Up- or downscaling instances in a particular zone

• Deploying the service in a new execution zone, or unregistering the service from that zone

Whereas similar approaches have been demonstrated in the past in the context of CDNs we

specifically target thousands of services that need to be distributed across tens of microdatacenters.

Content can be easily replicated across servers, but services need to be provisioned, can typically

handle only a limited number of users in parallel or are highly personalized. Hence, we need to take

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 30 of 50

Copyright © FUSION Consortium, 2014

into account service holding time distributions, as well as more limited infrastructure availability in

microdatacenters.

3.2 Service Registration and Automatic Deployment

This scenario has two purposes. First and most important, the goal of this scenario is, from a

functional perspective, to validate whether the prototype as a whole as well as the key FUSION

functional blocks, effectively allow for efficiently and optimally deploying new instances of existing or

new services across multiple zones in a particular FUSION domain.

As service deployment involves almost all key functional blocks at all layers of FUSION, it is the ideal

scenario to validate and evaluate the interfaces, interworking as well as implementations in between

and of each of those blocks.

Apart from the overall end-to-end functional evaluation, we will also focus on evaluating the role and

effectiveness of key enabling FUSION technologies and concepts, such as lightweight containers to

reduce deployment and provisioning time as well as runtime overhead, the benefit of having

evaluator services, etc.

This will result in a number of scenarios, focussing on evaluating different features in each scenario.

• In a first scenario, we will manually register a FUSION demo service such as an EPG service or

Shark 3D service and manually trigger the domain orchestrator to deploy the service in an

execution zone, triggering first its corresponding evaluator service (if any). This should result in

the application service to be deployed and accessible from a test client. This scenario tests the

deployment of atomic services in an arbitrary execution zone. As part of this scenario, we will

also evaluate the deployment of VMs compared with lightweight containers.

• In a second scenario, we will register a FUSION demo service and let the domain orchestrator

automatically deploy and scale an appropriate number of instances in a number of execution

zones.

3.2.1 Involved components, their functionalities and implementations

Component Functionality Implementation

Service Component EPG and Streamer service components,

with corresponding evaluator service(s)

Shark3D game service

FUSION-enabled services

Domain Orchestrator Service registration, service deployment,

evaluator-service based service

placement, etc.

Main FUSION prototype,

implemented in Python and

wrapped in Docker container

Zone Manager FUSION service lifecycle management

and intra-zone orchestration: session

slots, evaluator services, etc.

Main FUSION prototype

Service Resolver Allow client to automatically find an

active instance with available session

slots. API interaction with ZM regarding

available session slots.

Simple FUSION prototype

Data Centre Adaptor Implement abstraction layer between

FUSION ZM and underlying DC

management.

At least one FUSION prototype,

including a minimal Docker and

KVM enabled implementation

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 31 of 50

Copyright © FUSION Consortium, 2014

Client Simple interactive client Simple Java client

3.2.2 Means of verification

First, to verify each of the components, we will provide a number of simple service manifests,

register them into the prototype deployment and subsequently deploy a number of instances in one

or more execution zones. Subsequently, we will connect to the application services in a number of

settings and validate whether we can connect to these services as well as how smooth these services

are running. This will be presented in a live PoC demonstrator.

This demonstrator will involve a web interface to register new services, deploy new instances, see

the status of the various components, the number of session slots, etc.

Second, we will evaluate the total time it takes from deploying a new service and until the

corresponding locator is announced and propagated throughout the service resolution layer. We will

compare lightweight containers with classical VM based deployments.

3.3 Composite services

• Evaluate three scenarios:

o Static service graph deployment (intra/inter-zone)

o Dynamic service instance graph deployment

o Multi-configuration service components (for better resource utilization)

The third scenario covers the multi-configuration feature of (composite) service components,

enabling a better resource utilization as well as faster virtual scaling of new service instances across

existing instances of common service components (see Deliverable D3.1 for a detailed explanation of

multi-configuration service components). Specifically, we will leverage the EPG and streamer service

components in different configurations and demonstrate as well as measure their impact on service

deployment.

3.3.1 Involved components, their functionalities and implementations

Component Functionality Implementation

Service Component EPG and Streamer service components

Shark3D dashboard service

Multi-configuration enabled

implementation

Domain Orchestrator Service registration, service deployment,

evaluator-service based service

placement, etc. for composite services

Main FUSION prototype

Zone Manager FUSION Service lifecycle management

and intra-zone orchestration: session

slots, evaluator services, etc.

Main FUSION prototype

Service Resolver Provide (optimal) endpoint towards

either composite service or for one

component to automatically find the

other components with which to connect

to.

Basic FUSION prototype for

evaluating basic functionality

Advanced FUSION prototype for

evaluating efficiency

Data Centre Adaptor Allow adding/removing a new service

configuration to a running instance.

Main FUSION prototype

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 32 of 50

Copyright © FUSION Consortium, 2014

Client Simple interactive client Simple Java client

3.3.2 Means of verification

We will validate the multi-configuration concept by implementing this capability in the main FUSION

prototype implementation. Specifically, we will extend the Zone Manager and DCA for supporting

this feature as well as extend the manifest specification to be able to signal which service

components support and enable this feature for particular application services. The functional

evaluation will be showcased by sending a request from a client for a composite service that

comprises components developed by Alcatel-Lucent and Spinor.Inside a single zone, the zone

manager will flexibly combine instances of both services with available session slots.

From a performance perspective, we will measure and compare the infrastructure capacity reduction

that can be realized for a given demand pattern by adding new service configurations to existing

instances, compared to an approach where for each composite service dedicated instances are

deployed.

3.4 Service Placement Optimisation

Several execution zones will be set up in the testbed that vary in terms of:

• Capacity: one large execution zone, representing a central cloud provider; several small

execution zones with limited capacity, representing local processing capabilities in access

networks.

• Network location and performance: the underlying network topology and performance

(latency, bandwidth) will be configured in the Virtual Wall environment to deliver different

network performance characteristics to the set of end-user locations.

• Costs: the fixed and incremental costs to instantiate service instances in an execution zone.

Two services: Advanced EPG and Thin client 3D game will be defined in terms of the usage patterns

(number of users, their location and service invocation times), the target performance (maximum

latency, minimum throughput), and the total deployment budget.

The service placement logic will identify the execution zones to run the services and the number of

instances required in each location to meet predicted demand within the total budget.

3.4.1 Involved components, their functionalities and implementations

Component Functionality Implementation

Application Component Advanced EPG

Thin client 3D game

Application components

implemented in Docker

containers.

Orchestrator Service Placement Algorithm Plug-in to main FUSION

orchestrator prototype

implemented in Python.

Zone Manager FUSION service lifecycle

management functions to allow

automated instance

deployment in selected

execution zone.

Main FUSION prototype.

Service Resolver Minimal implementation to

select an available service

Simple FUSION prototype.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 33 of 50

Copyright © FUSION Consortium, 2014

instance.

Client Invoke service and report on

overall service performance.

Dummy clients as per main

FUSION prototype.

3.4.2 Means of verification

First of all a single service will be deployed, aiming to show that the performance targets for that

service are met, within the execution zone capacities and the deployment budget.

The second service will be deployed and the placement logic will attempt to optimise the location of

the service instances, given that some execution zone capacity has been consumed by the first

service. This may result in a sub-optimal deployment.

Both services will be deployed at once showing that trade-offs can be made between maximal

performance and minimal cost to allow both services to meet performance targets while keeping

within the constraints of cost and execution zone capacity.

By relaxing or tightening total budget for instantiation per service or minimum service performance

targets we will show that service placement decisions can differ.

3.5 Session Slot Service Scaling

In this scenario, we will demonstrate the use of load information reported by services to trigger

scaling decisions. Session slots and service holding time are proposed by the FUSION consortium as

an abstraction of application-specific load metrics and heterogeneity of the underlying

infrastructure, both intra-zone and inter-zone.

The demonstrator scenario will be as follows:

• Two services from different providers have been registered and pre-deployed on two

different execution zones (one replica per zone). One can consider this as the outcome of

demonstrator “Service Registration and Automatic Deployment”

o Services: EPG (Alcatel-Lucent) and Shark 3D (Spinor)

o Replicas running in at least two different execution zones. After all replicas have

booted, they each report a different number of session slots and/or expected service

request time (determined through evaluator services, or a direct mapping from the

amount of resources allocated to the execution container)

• As user load is generated, the number of available session slots visible to the service resolver

fluctuates. In this step of the demonstrator, we exclude scaling (both intra-zone and by the

orchestrator). If the number of session slots is depleted in one zone, all service requests are

directed to the replica in the other zone.

• We now enable scaling in a single zone. As more requests arrive, the number of instances is

scaled up when the number of available session slots drops below a predefined threshold.

When the number of available slots goes above a predefined threshold, some instances are

been marked as “decommissioned”. These instances will not receive new requests, but they

are only be shut down when the last pending request has been served.

3.5.1 Involved components, their functionalities and implementations

Component Functionality Implementation

Application Component EPG service Closed-source, provided by ALU

in a Docker container and using

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 34 of 50

Copyright © FUSION Consortium, 2014

Shark3D Rendering service the FUSION API.

Closed-source, provided by

Spinor in a Docker container

and using the FUSION API.

Zone Manager Intra-zone scaling decision Integrated with HEAT in

OpenStack

Zone Gateway Aggregates monitoring

information over all service

replicas and injects the

information in the service

resolution plane and to the

orchestrator.

VM/container running in the

zone

Zone monitoring infrastructure

Orchestrator Implements deployment and

scaling decisions.

One per domain.

Client Dummy client, provided by ALU

3.5.2 Means of verification

A GUI will show the following information:

• Number of session slots per service replica. This will be used to demonstrate intra-zone

scaling, as well as the outcome of the evaluator service.

• Aggregated number of session slots/instances per zone, as visible to the service resolver. This

information might lag the actual information in the zone; for scalability reasons.

3.6 Evaluator services

An evaluator service is a service which is implemented by software vendors but then used by FUSION

itself to score possible instantiation locations of a service. A evaluator service is closely related to a

specific service, and is usually implemented by the same software developer as that service. For

example, FUSION may use an evaluator service for a game service to check if a particular execution

zone supports the GPU features required by that game service.

Note that the main motivation for evaluator services is not to replace static manifests, but to avoid

core FUSION components to understand all possible requirements of services. For example, while it

would be possible to describe GPU requirements (e.g. minimal shader model version) in a manifest,

implementing this within FUSION would make service vendors depending on implementing support

for their requirement into FUSION, for example if new hardware is available or features must be

tested in a different, service-specific way. Technically a evaluator service may work very well with

configuration parameters or manifests, as long as the code interpreting them are not hardwired in

the core of FUSION.

3.6.1 Involved components, their functionalities and implementations

As part of the demonstrator, we will implement a evaluator service for the Shark 3D based 3d service

component, which requires a GPU. As described in section 2.3.3, a likely option is to implement the

evaluator service for a Shark 3D based service component also based on Shark 3D.

Component Functionality Implementation

Application Component EPG evaluator service Closed-source, provided by ALU

in a Docker container and using

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 35 of 50

Copyright © FUSION Consortium, 2014

Shark3D rendering evaluator

service

the FUSION API.

Closed-source, provided by

Spinor in a Docker container

and using the FUSION API.

Zone Manager Intra-zone deployment decision Integrated with HEAT in

OpenStack

Zone Gateway Aggregates evaluator results VM/container running in the

zone

Zone monitoring infrastructure

Orchestrator Implements deployment

decisions.

One per domain.

Client Dummy client, provided by ALU

3.6.2 Means of verification

The two means of verification are:

• FUSION must deploy a Shark 3D based service only on servers which have the requirements

checked by the evaluator services for Shark 3D, which mainly means checking for the

precence of a GPU. Otherwise FUSION might try to install a Shark 3D based service on a

server which does not support running that service successfully, resulting in an run-time

error, which must not happen.

• The evaluator service provides FUSION information about preferred deployment options, for

example that one server is better suited to run a particular service (e.g., a Shark 3D based

service) than another because of better GPU features, resource characteristics or overall

better runtime behavior. While the service could run on both servers, FUSION needs the help

of the evaluator service for making a better decision. Whether this scenario can be verified

by the demonstrator is not clear yet since it depends on the possibility of having multiple

different GPU-powered servers available in one of the testbed, which currently is not the

case.

3.7 Heterogeneous cloud environment

We will demonstrate the impact of heterogeneous environments and demonstrate how various

FUSION layers take this into account in a few dedicated test scenarios and setups. Specifically, we will

demonstrate the use and effectiveness of service metrics such as session slots as well as evaluator

services for efficiently deploying services with particular requirements on hardware infrastructures

with particular capabilities.

• We will demonstrate how particular services can exploit particular hardware capabilities to

maximize the number of available session slots per type of environment;

• We will demonstrate how evaluator services can be intelligently deployed in particular hardware

and software environments for efficiently selecting the optimal environment for a particular

service, without having to deploy instances of all evaluator services in all possible environments;

• We will demonstrate the impact of various platform optimizations such as lightweight

virtualization, NUMA-pinning and real-time guarantees for providing better QoS towards the

FUSION applications;

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 36 of 50

Copyright © FUSION Consortium, 2014

• We will demonstrate how the underlying cloud platform can leverage these FUSION metrics for

optimizing how particular services can be optimally deployed on the underlying infrastructure

(improving the overall density and stability of deployed services), and how this (in its turn) is

reflected in a higher efficiency score due to better overall efficiency and predictability, provided

by the underlying optimizing platform.

3.7.1 Involved components, their functionalities and implementations

Component Functionality Implementation

Service Component EPG and streamer service components

Various evaluator services

Prototype service components

DCA Platform-aware physical DCA prototype,

optimizing the deployment of services on

particular physical environments

Non-optimized DCA implementation,

which will be used as a baseline

Prototype implementation of a

platform-aware DCA, provided

by ALU

Zone Manager Efficient (evaluator) service placement

based on evaluator service feedback

Agnostic zone manager, assuming a

homogeneous cloud data centre

Main FUSION prototype

Orchestrator Evaluator-service based placement

Agnostic orchestrator, assuming a

homogeneous distributed cloud

Main FUSION prototype

Client Simple interactive client Simple client

3.7.2 Means of verification

The overall goal of this scenario is to evaluate how effective the various FUSION concepts and layers

can handle service, platform and infrastructure heterogeneity. This will be done by measuring

different types of metrics of both the applications and platform. Specifically, we will create a GUI,

depicting live metrics such as:

• Application performance metrics, such as number of supported session slots;

• Application QoS metrics, such as average and worst-case application latency;

• Infrastructure performance/efficiency metrics, such as power efficiency;

• Platform QoS metrics, such as scheduling latencies;

We will verify this scenario by creating two main FUSION setups, namely a non-optimized platform-

agnostic FUSION domain and zone, where all execution zones as considered to be similar to each

other with respect to resource capabilities, and a heterogeneous-aware FUSION domain and zone,

where evaluator services, session slots and lower level optimizations are combined to drastically

improve overall efficiency and QoS.

We will deploy an EPG service each of the setups, connect an application client to each of the

services, and evaluate the overall QoE of the application in terms of responsiveness, quality and

overall smoothness.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 37 of 50

Copyright © FUSION Consortium, 2014

4. FIRST PROTOTYPE DEPLOYMENT

4.1 Virtual Wall Deployment Environment

To evaluate the FUSION components and architectural design, we are building an integrated

prototype using the jFed [2] suite for testbed federation. JFed connects testbeds located on different

geographical locations such as the iMinds Virtual Wall, PlanetLab Europe and Utah Emulab.

The deployment process goes as follows: first a user creates the network topology using either a

configuration file or a web-based GUI. Next, the experimenter can operate each node through

remote login such as ssh.

In the current stage, the FUSION integrated prototype is being build using jFED on a single testbed,

namely the Virtual Wall [1] testbed. The iLab.t Virtual Wall facility is a large scale generic test

environment for advanced network, distributed software and service emulation and evaluation, and

supports scalability research.

Using the Virtual Wall we are able to quickly emulate any network topology of choice

interconnecting a number of execution zones. Experiment deployment is scripted using a so-called

Rspec file. First, the user defines the network topology in this Rspec, using either a GUI or his own

script.

Then, the user specifies in the experiment script the software to be installed on each node: zone

gateway, orchestrator, service resolver, etc. Once the nodes, edges and their respective

characteristics (node operating system, edge bandwidth, edge latency, …) are set, the experimenter

starts the deployment process which is completed in a matter of minutes. Scripts are available to

provision nodes as zone gateway, orchestrator, service resolver or client.

To facilitate the deployment process and minimize the required manual intervention, we developed

a configuration generator similar to the one described in 4.2 (REFERENCE). First, we generate a

network topology using a network generator. Next, we assign FUSION functionality to each node;

execution zones start up with the required functionality to process requests, each service resolver

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 38 of 50

Copyright © FUSION Consortium, 2014

builds its own resolution and forwarding table and waits for incoming requests while client nodes

contain request generators. Last, we generate a configuration file containing the above mentioned

information and use this to deploy our setup on the jFed testbed.

Currently, we have a running prototype for a single domain, comprising:

• 1 orchestrator

• 1 service resolver

• 5 execution zones (4 emulations, 1 zone running OpenStack)

Working use case scenarios are:

• Registration and deployment of services

• User queries, following a Poisson distribution for the interarrival time between requests

• Instance availability update from execution zones to the client

4.1.1 Next steps

The Virtual Wall uses virtualization to emulate a large network but it is only one testbed on one

location. As a result, FUSION can not use location-aware algorithms when running on the Virtual Wall

alone. To overcome these limitations we use the jFed Invalid source specified. testbed, a suite for

testbed federation. Similar to the Virtual Wall, jFed creates topologies using a configuration file

containing the network topology and optional functionality to be deployed on nodes. Nodes can now

be deployed over multiple testbeds located in different geographical regions, each running a

different configuration.

4.2 Orange Datacenter Deployment Environment

4.2.1 Current setting

One possible deployment scenario for FUSION that is interesting from the point of view of network

operator assumes the use of mini-data centres integrated with the network infrastructure of the

operator in selected points-of-presence. Orange is considering this kind of integration as one of the

strategic options for migrating its infrastructure under the heading of Next-Generation PoP (NGPoP).

The main underlying idea for NGPoP in case of Orange is to organise it relatively close to clients

around collocated access/aggregation infrastructure for both wired and wireless access technologies.

Within FUSION experimentation work, Orange is planning to mimic a simple NGPoP setting using its

laboratory infrastructure as depicted schematically in Figure 7.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 39 of 50

Copyright © FUSION Consortium, 2014

Figure 7 NGPoP-based FUSION deployment.

The OpenStack data center is currently emulated using Cisco platform running VMware. The role of

servers managed by OpenStack Nova perform virtual machines enabled by VMware that run run

KVM. These machines are used to host target VMs that perform as applications managed by FUSION.

Although this “nested virtualization” setting may pose performance restrictions for certain types of

experiments, nevertheless it can well support functional tests including many experiments with

service resolution and orchestration. For more advanced test in the future, migration to bare metal

OpenStack is envisioned.

Current experiments covered integrated service routing and orchestration assuming no specific zone

manager capabilities to be available. Therefore direct access to OpenStack IaaS was used based on

open REST API provided by OpenStack (http://developer.openstack.org/apiref). Current

implementation of our integrated service router/orchestrator) is based on Java using SDK Apache

jclouds. The latter provides access to the functions of OpenStack API.

4.2.2 Next steps

Next steps include integration of network awareness into the resolution component which will

require collection of respective data from network infrastructure. The latter is based on Vyatta

routers and we envision SNMP-based access to selected measurements and CLI-based or equivalent

access to forwarding information. Whether or not relevant information will be presented to

resolution functions in ALTO format is a matter of future decisions, although we are aware of

potential difficulties in implementing ALTO server and possibly limited impact such implementation

would have externally. Another step planned is the integration of our infrastructure with Virtual Wall

to enable common experiments with services being developed by other partners.

4.3 First prototypes of FUSION-enabled composite services

As a first prototype, a combination of the ALUB Java output client, based on the RFB protocol in

combination with the Spinor Shark 3D engine were launched on different PCs and connected to each

other. The main purpose was to demonstrate the interoperability between the two services building

a composite service and the possibility to create new session slots inside the Shark 3D engine. By

connecting the client to the Shark 3D software, a new viewer context was instantiated and the

rendered output for this context was captured and transferred to the client using the RFB. In this

sample, the context mapped to the same world as other exiting contexts, but it is just a matter of

OpenStack DC (emulated on Cisco DC/VMware)

Execution zone B (Orange NGPoP scenario)

Integrated in NGPoP:

service resolver, zone

manager, orchestrator
Network (access/aggregation/core)

WP
FE

WP
FE

…

WorldPress

frontend WorldPress

Backend
(data base)

Load

balancer

LB WP BE

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 40 of 50

Copyright © FUSION Consortium, 2014

configuration, which parts should be instantiated on connection and therefore a whole new scene

for each connection could be instantiated, too, which could then be enhanced to fully functional

session slots.

4.3.1 Next steps

Next steps are using video compression and input channel.

4.4 Host environment deployment

For implementing and testing the various FUSION functionalities, APIs as well as initial demonstrator

services, we developed and implemented initial prototypes of a FUSION domain orchestrator, a zone

manager, and a host based data centre adaptor layer leveraging Docker and KVM as virtualization and

isolation mechanisms.

Below a summary of the various actions we did:

• We first implemented a skeleton implementation of these core FUSION layers, focussing on

implementing and validating the APIs detailed in Deliverable D3.2.

• Next we expanded the skeleton implementation into a working prototype to validate the overall

FUSION functionality for registering, deploying and managing FUSION application services on top

of a Docker based host environment.

• We embedded the various Python-based prototype implementations in Docker containers (as

well as VMs) and deployed them on a Dockerized implementation of the host-based DCA

prototype implementation. In other words, we used the DCA layer, which itself was wrapped in a

container, to manage and deploy a FUSION zone manager, domain orchestrator and service

resolver on top. This is illustrated in Figure 8.

• We also integrated several demonstrator service component prototypes, such as an EPG,

streamer and virtual desktop component. For this, we embedded them in a Docker container (as

well as VM), developed the necessary wrapper scripts for exchanging session slot and service

configuration data with a FUSION zone manager, and created JSON-based manifests for

providing initial service manifest descriptions. The latter were used for registering and deploying

these services on the prototype.

• All these components subsequently were integrated and deployed on the virtual wall

infrastructure provided by iMinds. This includes integration with their service scaling prototype

based on an OpenStack HEAT environment.

Figure 8– Deployment of prototype components on top of a Docker-based DCA environment

Using this initial prototype deployment on a Docker host environment, we tested a number of key

FUSION scenarios, some of which will be described and evaluated in more detail in Section 5.1:

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 41 of 50

Copyright © FUSION Consortium, 2014

• FUSION core service deployment (i.e., domain, zone, service resolver) on the simple DCA

implementation;

• Application service registration in a FUSION domain;

• Application service deployment, involving all components: domain orchestrator, zone manager,

evaluator service, DCA, Docker daemon, service resolver, etc.;

• Integration of an evaluator service during service deployment;

• Automatically connect and interact with services deployed on the prototype using the service

name and service resolver;

• Validating the functionality of the session slots as multiple clients connect and disconnect;

• Validating the aggregation capability of available session slots coming from multiple active

instances of the same service type;

• Validating the multi-service configuration capabilities of the various application services for

sharing service component instances across multiple services (composite or not);

5. FIRST PROTOTYPE EVALUATION

5.1 Service Registration and Automatic Deployment

In WP3, we provided already an initial design and functional implementation of the key FUSION

orchestration layers, implementing both the REST APIs as well as their overall function. In this

section, we describe how we validated and evaluated the current FUSION prototype and their end-

to-end interactions.

Specifically, our initial evaluation of the FUSION prototype involves the registration and subsequent

deployment of one or more FUSION services, as this incorporates almost all key FUSION components,

as is depicted in Figure 9: the orchestration domain, zone manager, DC adaptor (as well as the DC

itself), the evaluator services, session slots and monitoring, zone gateway, service resolver, and

obviously the application services themselves. After a service is deployed by FUSION, user client can

to connect to an available instance of the deployed service, only by providing the corresponding

service name.

We first elaborate on the functional aspects, followed by an initial performance evaluation for a

number of scenarios.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 42 of 50

Copyright © FUSION Consortium, 2014

Figure 9 – Service registration and deployment scenario

5.1.1 Functional evaluation

We first implemented the service registration function, allowing a service provider to register a new

service in a FUSION domain by providing a service manifest when registering that service to a specific

FUSION domain orchestrator. This manifest is stored in the domain after which the service can be

deployed.

To validate our initial end-to-end implementation of the service deployment function, we currently

manually trigger the FUSION domain orchestrator to deploy a number of session slots of a registered

service, which will trigger the sequence of steps described below in our working prototype:

1. We first trigger the domain orchestrator to start deploying a new instance in the domain by

triggering the corresponding REST method (e.g., PUT /1.0/services/epg1.bell-labs.be/state

for the EPG service);

2. The domain orchestrator implementation then first makes a preselection of feasible

execution zones; in the current implementation of the preselection module, all registered

zones are considered feasible; in a later prototype, we will integrate with service

requirements, load and network monitoring data;

3. For each of the selected zones, the domain prototype will first check whether that service

was already previously registered in that zone; if not, the domain orchestrator first registers

the service into the zone;

4. Next, for all selected zones, the domain orchestrator implementation checks whether there

is still a valid offer available for deploying that service in that zone. In such case, the cached

offer will be reused and the zone manager will not be contacted. Otherwise, the orchestrator

requests the zone manager to prepare a new offer for that specific service deployment

request, passing along the necessary deployment and instantiation parameters.

5. The zone manager component in our prototype will now prepare a new offer. For services

that have specified an evaluator service, the zone manager first looks up the endpoint(s) for

various instances of that evaluator service, or simply leverages a generic evaluator service. In

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 43 of 50

Copyright © FUSION Consortium, 2014

case no evaluator instance is running yet, the current implementation returns an empty offer

to the domain orchestrator. Later implementations could automatically deploy the evaluator

service in the zone, assuming there is enough time available. Indeed, in the current

implementation, the domain orchestrator can specify a deadline within which all offers need

to be provided by the zone manager. Depending on whether the deployment was triggered

by an on-demand or pre deployment scenario, there may be more or less time available for

evaluation and deployment. Note that using light-weight containers facilitate fast

deployments, including of evaluator services (see Section 5.1.2).

6. The zone manager prototype then triggers each evaluator service instance to make a proper

service-specific evaluation and return a corresponding score.

7. All scores are collected and the best is chosen by the zone manager. For that score and

evaluation request, a new offer is created and added to the zone manager data base for

future reference. The corresponding offer is then returned to the domain orchestrator.

8. Based on all offers that were received (in time), the domain orchestrator makes a final

selection and chooses the best zone(s). In the current implementation, only one zone is

selected; however, in future implementations, we envision that multiple zones may be

selected, each for deploying a subset of new session slots, especially for large-scale

deployments, as some zones may only be able to deploy a portion of all slots at some price

point or efficiency score.

9. The domain orchestrator now triggers each of the execution zones (in parallel) for deploying

a number of session slots according to a specific offer.

10. The zone manager in each zone now will start deploying one or more instances. For this, it

will trigger the DCA to deploy new instances on the underlying DC infrastructure.

11. In our current DCA implementation, this means either a Docker instance or KVM instances

will be deployed on the DCA host, based on the manifest data, DCA capabilities as well as

deployment parameters. The corresponding instantiation parameters are stored in the ETCD

key/value store and passed to the application service instance.

12. While the container or VM is booting, the DCA returns a status code to the zone manager,

which in its turn returns an appropriate status code to the orchestrator, all the way back to

us (as we manually triggered service deployment).

13. In the mean time, when the application service is up and running and the new session slots

become available, the service reports the newly available slots to the zone manager, which

will subsequently inject them into the service resolution plane. Depending on the

virtualization technology used, this may take seconds to minutes.

14. When the service resolver have been updated with these new slots (which could come from

an entirely new service type), the user or client (or another FUSION service) can make a

service request to the FUSION service resolution plane, which may return the endpoint of

one of the newly created instances, after which the client can directly connect to the service

of interest.

We already implemented the entire process as described above as such and thus allows already an

initial full end-to-end deployment of the various already available FUSION services (e.g., EPG,

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 44 of 50

Copyright © FUSION Consortium, 2014

streamer, evaluator, etc.), using most of the key FUSION functional blocks, which are all already

communicating and working together already.

Note that if at any point in time some step fails, a corresponding error message is returned to the

previous component, which subsequently either takes correcting measures or returns with an error

message. Note also that we implemented a standard user/role based authentication mechanism in

all prototype components so that only registered and authenticated users or software components

can trigger particular REST API functions, or only can see a limited view of the system state (e.g., a

service provider can only see its own services as well as all other publicly visible services from other

providers).

In Table 1, a summary is provided of the status of various tests we have performed already on the

prototype. As can be noticed, we mainly focused so far on the creation and runtime management.

The cleanup as well as more automated functionality will be for the third year of this project.

Table 1 – Functional status of working prototype

Status Test Comments

PASS Register users
Each FUSION component can successfully register new users and

assign roles.

PASS Register multiple zones
We can register one or more zones to a FUSION domain

orchestrator.

PASS Register services
We can dynamically register services using simple JSON

manifests to a FUSION domain

FAIL Unregistering objects

Full cleanup of state, including termination etc. has not been

fully implemented yet. For example, to unregister a zone, all

running instances of all services of that zone first need to be

removed

PASS
Deployment of atomic

services

We can already deploy atomic services manually (as described

above)

PASS
Evaluator-based

placement

Services can already specify their dependency on external

evaluator services for making a zone placement decision. In the

current implementation, it is assumed that such evaluator

services already have been predeployed.

FAIL
Deployment of

composite services

We are currently working on implementing deployment of

composite services in a zone.

FAIL Automatic scaling Automatic scaling and deployment

PASS Running Docker services

We support running services wrapped as Docker containers. In

fact, the FUSION orchestration services themselves are also

Docker containers.

PASS Running VM services We also support simple KVM-based services for running services.

PASS
Instantiation

parameters

We support providing and passing service deployment and

instantiation parameters, both to the evaluator services as well

as providing them to the instances, which can use those for

customizing their instantiation.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 45 of 50

Copyright © FUSION Consortium, 2014

PASS Session slots

Services can forward their active session slot information to the

zone manager, which will inject it to the registered service

resolver.

PASS Service requests
We can successfully connect to particular services using only the

service name, and interact with the active session (e.g. EPG).

FAIL Session slot zone scaling
We did not integrate the session-slot based scaling in this

working prototype yet.

PASS
Adding new service

configurations

We can already add new service configurations to existing

service component instances for hosting multiple services and

their corresponding slots.

FAIL
Removing service

configurations

We did not fully implement the removal of service configurations

in service instances yet.

5.1.2 Performance evaluation

In this section, we discuss initial performance results of deploying a FUSION application service (e.g.,

evaluator or EPG service) in our demonstrator setup. Note that the absolute timings should be

regarded as a lower bound, as in a more complex full-blown (distributed) FUSION implementation,

these timings obviously could vary significantly.

First, in Figure 10, we show a break-down of the total time it takes to trigger the deployment of a

new service in our prototype. Note that for these timings, the implementation follows the steps

described earlier in Section 5.1.1, but do NOT include the time for the instance to be fully

instantiated and available for incoming requests (see further). Also, for these tests, all prototype

components (i.e., domain, zone, DCA, etc.) were deployed locally on the same host as Docker

containers. Next year, we will also evaluate and compare with distributed deployments on the vWall.

Figure 10 – Break-down of timing of deploying a new service in a domain

We demonstrate the deployment time for four service deployment scenarios:

• Deploying an evaluator service;

• Deploying a FUSION application service (e.g., EPG or streamer service) as a new Docker instance;

• Deploying a FUSION application service (e.g., alternative streamer service configuration) by

adding a new service configuration to an existing Docker EPG service instance;

0 0.1 0.2 0.3 0.4

Evaluator

Docker

Instance

Service

Config

KVM

Instance

Time (seconds)

Preselect Zone

Evaluate

Deploy Zone

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 46 of 50

Copyright © FUSION Consortium, 2014

• Deploying a FUSION application service (e.g., EPG service) as a new QEMU/KVM instance;

From this graph, a few observations can be made:

• A first observation is that in the current implementation, deploying a new instance is very fast,

taking less than half a second, even though there are already quite a few components and steps

involved for implementing this deployment. Note that in this evaluation, we assume the

VM/container images of the services are already readily available on the target host machine. If

this is not the case, then the overall “Deploy Zone” time will increase significantly. Also, the

current service evaluation step currently involves triggering a simple evaluator service that

currently immediately returns a score without doing on-the-fly evaluations (which is not

preferred anyway). In real deployments, we expect this evaluation to easily take up to a few

seconds, depending on the amount of time the domain orchestrator allowed for making

evaluations.

• Second, adding a new service configuration to an existing instance significantly reduces the total

time for deploying a new instance. As in this case one can also assume that there will be no

provisioning delay, this shows that being able to optimally reuse existing components and

instances can significantly speed up domain-based deployment.

• Third, the KVM-based instantiation is faster than Docker-based instantiation. Note that de

deployment time here does not include the time for the new instance to be fully operational, but

only the time for the environment to be created. In case of Docker, it takes a fraction of a second

for the container environment to be created. However, this delay could easily be mitigated in

case the container creation would also be done asynchronously as with the VM creation.

As mentioned earlier, the timings above do not include the delay between a new service being

instantiated and the service instance being fully operational, reporting available session slots to the

zone manager. This delay is depicted in Figure 11, where we show the total instantiation time in case

of three scenarios:

• Instantiating a new FUSION service in a Docker container;

• Instantiating a new FUSION service by adding a new service configuration to an existing FUSION

instance running in a Docker container;

• Instantiation a new FUSION service in a KVM VM.

Figure 11 – Break-down of time needed for instantiating a new instance in a zone/DCA

The blue bar shows the time for creating the overall environment on the host. As mentioned before,

we assume here also that the service container/VM images are already available on the target host

machine. The red bar shows the time it takes for the application in the VM or container to start and

0 1 2 3 4 5 6 7 8 9 10 11

Docker

Instance

Service

Config

KVM

Instance

Time (seconds)

Create Instance

Slots Available

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 47 of 50

Copyright © FUSION Consortium, 2014

report available session slots back to the Zone Manager. In case of KVM, this also includes the time

to boot the VM. Obviously, the minimal time needed for an application to be fully operational can be

very application-specific. However, for FUSION services, a design goal should be to keep this start-up

delay as short as possible, especially for services that need to be able to scale out very rapidly.

Overall, a few conclusions can be drawn from these results:

• Firstly, booting a VM can quickly take a number of seconds (i.e., 10 seconds on this

environment), and although this can be reduced by means of VM snapshots etc., there will

always be a penalty on real cloud environments;

• Secondly, creating a new container and starting an application in a container instance can easily

take less than one second, which can be especially advanteous in case of FUSION services;

• Thirdly, Simply adding a new service configuration to an existing instance reduces this delay even

further, having new session slots available in only a fraction of a second. Note also that in this

scenario, there will be no provisioning delay, and the start-up delay typically will only involve

some internal configuration that needs to be done, rather than allocating all application

resources and data structures from scratch (i.e., a hot boot scenario).

In summary, in this section, we already provided some initial performance results of our FUSION

prototype for deploying FUSION-enabled application services wrapped in both Docker and KVM. In

the final year of the project, we will expand these results by including more complex scenarios and

evaluate these on more heterogeneous and distributed environments.

5.2 Service resolution

As has been mentioned in section 4.2, current evaluation experiments covered integrated service

routing and orchestration. Actually, no specific zone manager capabilities have been implemented

for this purpose so direct access to OpenStack IaaS capabilities based on open REST API was used.

The orchestrated service adopted is a simple WorldPress. The overall structure of this application

and its relation to the simple orchestrator/service resolver is depicted schematically in Figure 7. The

choice of WorldPress was motivated by our desire to start fast prototyping with selected

functionalities like composite services and selected orchestration patterns. Of course, in the near

future this application is planned to be substituted by services being deployed by other partners of

the FUSION consortium. As can be seen, the application is built using the chaining pattern as of

deliverable D4.2 (see section 2 therein) to allow for multiple components and load balancing. Related

to this, but not shown in the figure is the adoption of shall scripting using CloudIinit tool in support of

this chaining pattern.

We note that the decision for integrated resolution/orchestration to a great extent relates to the

concept of NGPoP where we envision that FUSION components located in a given NGPoP will

typically serve its own customers and optionally external customers. The validity of this assumption

is of course for further studies, however, we believe the results achievable even under this specific

scenario can still be valuable.

Next main steps that are planned are two-fold. First, there are plans to integrate our NGPoP demo

with VirtualWall and also integrate into our NGPoP FUSION demo selected services currently being

developed by other FUSION partners. EPG is a candidate application that is being considered for this

role. The other dimension relates to testing the potential of selected concepts that are researched by

FUSION (related mainly to orchestration and service resolution) to allow customers to build network

of virtual WebRTC media-relays.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 48 of 50

Copyright © FUSION Consortium, 2014

5.3 Load-aware service scaling and resolution

Both the orchestrator and the service resolver operate on the notion of session slots, an abstract

load metric for long-lived sessions that plays a central role in FUSION. Figure 12 illustrates the

different components and interactions in this integrated prototype. Service requests are resolved to

the best available instance. In the current prototype, the request is resolved to the locator of the

instance that has the lowest latency to the requesting user. Each instance reports its current slot

count to the zone manager, who injects an aggregate report in the service resolution plane. Scaling

mechanisms are demonstrated, both intra-zone and inter-zone.

Figure 12 – Session-slot based scaling and resolution

5.3.1 Functional Evaluation

To demonstrate the interaction of slot-based scaling, we take a set-up where two services (EPG and

Shark3D) are being registered with the domain orchestrator. These services have been extended by

implementing the FUSION API needed to report session slots. Furthermore, there are two zones

where services can be deployed. Initially, a single instance of the EPG service is deployed in zone A,

and a single instance of the Shark3D service is deployed in zone B.

We assume a single network location from which service requests originate (e.g. a subnet). This

originating point is closer to zone A in terms of network latency. If service instances are available in

both zones, this essentially means that the service resolver will always resolve to the service

endpoint in zone A and only direct users to zone B if the session slots are depleted.

The following sequence of interactions will be demonstrated:

1) Service requests are generated at regular intervals for the EPG service. The number of session

slots reported by the single EPG instance decreases according to the number of users connected.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 49 of 50

Copyright © FUSION Consortium, 2014

2) When the number of available session slots drops below a predefined threshold, the zone

manager of zone A deploys additional instances.

3) When too many session slots are available, the zone manager will shut down a number of

instances to reduce deployment costs.

4) If the maximum number of available session slots is reached, the orchestrator deploys the EPG

service in zone B. As long as all session slots of the EPG service in zone A are depleted, service

requests are resolved to zone B.

5.3.2 Performance Evaluation of current implementation

The current prototype is deployed on the via the jFED tool on the Virtual Wall. Each zone is deployed

on a single machine (Dual INTEL XEON E5645, 24 GB RAM, 250 GB), that runs a complete OpenStack

Icehouse version. The OpenStack implementation has been modified and extended with FUSION APIs

to support session-slot based scaling.

Figure 11 shows the demonstrator GUI. The GUI shows the running services and offers the possibility

to generate client requests The number of session slots is shown per instance, indicated by white

squares. If a session slot is occupied, the white square will turn red.

Figure 13 – Demonstrator GUI for slot-based scaling and resolution

The graph on the right hand side of the GUI shows the cost of a client connection. The service

resolver uses the network latency between clients and zones for request resolution. In this case, we

use the network latency as cost metric. The image shows that the last 5 clients that connected each

had a cost of 50 ms. When a client connects to an instance in the second zone, which has a cost

metric of 70 ms, you will see a spike at x=6 to y=70.

The services in the current setup are lightweight ncat echo servers running in VMs. These will be

replaced by VM images of the EPG and Shark3D software.

The downside to this approach is that scaling VMs is remarkably slower then scaling linux containers

for example.

5.3.3 Future plans

On top of that, several components (custom scripts, Heat and Ceilometer evaluators, …) have to

work together, which also causes a delay. Therefore, switching to Docker containers and developing

custom scaling software appears to be far more efficient.

D5.2 Final use case design, report on prototype deployment and initial

evaluation results

Page 50 of 50

Copyright © FUSION Consortium, 2014

Scaling results in multiple endpoints for a given service, which guarantees the availability of the

service. Another advantage is that the service resolution algorithms can use a number of parameters

such as session slots, response time, denial of service numbers, … for each of these endpoints to

determine which one to return when a client request is received. Which exact parameters are to be

used for these algorithms is up for discussion.

6. REFERENCES

[FFM14] FFmpeg, http://www.ffmpeg.org/, 2014.

[FV09] Vandeputte, F., Vampire parallelization toolchain, IWT Vampire project, Deliverable

D.B.4.3, 2009.

[RT10] Richardson, T., The RFB Protocol, http://www.realvnc.com/docs/rfbproto.pdf, 2010.

[SHARK3D] Shark 3D, http://www.spinor.com/goto/shark3d_as_service.html, 2014

[X13] X264, http://www.videolan.org/developers/x264.html, 2013.

[YUV13] YUV4MPEG2 file format, http://wiki.multimedia.cx/index.php?title=YUV4MPEG2, 2013.

