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EXECUTIVE SUMMARY

This document presents the FUSION architecture for service-oriented networking. Large numbers of
service nodes are distributed throughout the Internet: in access points close to the users; co-located
with routers within an ISP’s network; in local data-centres owned and operated by ISPs; and in
traditional data-centres and service farms operated by cloud and service providers. Given this rich
set of resources, FUSION will enable services to be flexibly deployed over this distributed service-
execution platform and will aim to optimise the placement of service instances according to the
performance requirements of the application, the location of its users and according to the
experienced demand. At the network level a service-anycast capability is being developed so that
service instance selection can be optimised on the grounds of proximity and network/server load.

The document begins by introduces the advantages and benefits of adopting a service-oriented
networking approach from business perspectives as well as on technical grounds including
optimality, dynamicity, flexibility and scalability for a range of applications/service use cases, drawing
the set of requirements for the system behaviour. The defined service use cases include highly
demanding, high performance and personalised applications that would be difficult to deploy in
today’s cloud computing infrastructures.

The overall FUSION system architecture is specified, identifying key functional blocks and the
interfaces between them. Three layers are defined: the execution plane, the service routing plane
and an underlying IP networking infrastructure. Three main architectural components are specified:
the FUSION orchestrator responsible for managing FUSION services and their fine grained placement
in a set of distributed FUSION execution zones, and the FUSION service routers which resolve and
route queries and service invocation requests from users to service instances. The three main
architectural components are elaborated through an analysis of service and execution layer functions
and a decomposition of the FUSION orchestration architecture. The service networking architecture
is elaborated, covering naming and addressing issues and service routing deployment options. An
overlay-based service routing architecture is identified as the best candidate on the grounds of
meeting the requirements of servicelD-based routing in a scalable and cost-effective manner. The
document specifies its initial software architecture for implementation and defines the interfaces
and APIs for the FUSION system.

A range of candidate business models for the FUSION ecosystem are introduced highlighting
interactions between different actors and roles involved in the provision and operation of services.
Two business model options are selected as the basis for the next phase of project work: an ISP-
centric model and an OTT model with a common service routing plane.

Security threat models are analysed to identify security issues to be addressed by the FUSION
service-oriented networking system beyond those applicable to general cloud computing systems.

Finally, related architectures, technologies and projects are reviewed highlighting the relevance to
the FUSION system and identifying the key differences of the FUSION approach to service-oriented
networking. The approach of the project is positioned with respect to grid and cloud computing
systems, specific cloud platforms such as OpenStack, NaaS for cloud and networking convergence
and other architectures for service-aware networks including IRMOS, NGSON, IMS/SIP-based
architectures and information/content centric networking approaches such as NDN, PSIRP/PURSUIT.
NetInf, Serval and XIA.

This deliverable presents the initial specification of the FUSION system — the service architecture and
service networking are being studied in WP3 and WP4 respectively and a more detailed description
of the functions, algorithms and protocols are available in deliverables D3.1 [D3.1] and D4.1 [DA4.1].
The initial overview of the interfaces and interactions specified in this document will be refined in
deliverable D2.2 in year 2 of the project. The final system architecture will be documented together
with an evaluation of the cross-layer models in deliverable D2.3 in year 3 of the project.
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1. INTRODUCTION

1.1 Document overview

This document presents an architecture for service-oriented networking as envisioned by the FUSION
project. The document introduces the advantages and benefits of adopting a service-oriented
approach for a range of applications/service use cases, drawing the set of requirements for the
system behaviour. The overall system architecture is defined, identifying the key functional blocks
and the interfaces between them. A range of possible business models are introduced highlighting
the interactions between the different actors and roles involved in the provision and operation of
services. A set of security threat models are analysed to identify security issues beyond those
applicable to general cloud computing systems. Finally, related architectures, technologies and
projects are reviewed highlighting the relevance to the FUSION system and identifying the key
differences of the FUSION approach to service-oriented networking.

This deliverable presents the initial specification of the FUSION system — the service architecture and
service networking are being studied in WP3 and WP4 respectively and more a more detailed
description of the functions, algorithms and protocols are available in deliverables D3.1 [D3.1] and
D4.1 [DA4.1]. The initial overview of the interfaces and interactions specified in this document will be
refined in deliverable D2.2 in year 2 of the project. The final system architecture will be documented
together with an evaluation of the cross-layer models in deliverable D2.3 in year 3 of the project.

1.2 Problem Statement

FUSION will enable highly-demanding and personalised services to be flexibly deployed across the
Internet; services that depend upon real-time processing of high-bandwidth streams with very low-
latency to large numbers of geographically distributed users. Data centres and cloud-computing
infrastructures have not been designed with such decentralised, bandwidth/processing-intensive,
real-time applications in mind. In-network processing nodes need to be strategically positioned
closer to the users of the services they deliver to provide faster application responsiveness and to
reduce traffic within and between ISPs. A new networking paradigm is required to break down the
barriers between data centres/server farms and the wide-area networks that interconnect them. We
envision a fusion of service deployment and execution technologies with native service-centric
routing capabilities throughout the network to provide a service-oriented network ecosystem for
delivering a wide range of novel data- and processing-intensive services that have so far been
impossible to deploy at large scale over the Internet.

1.2.1 Service-centric networking

The Internet was originally conceived as a data communications network to interconnect end-hosts:
user terminals and servers. The focus has always been on delivering data between end points in the
most efficient manner. All data was treated in the same way: as the payload of packets addressed for
delivery to a specific end-point. In recent years, since the development of the world-wide web, the
majority of traffic on the Internet originates from users retrieving content: text, images, audio and
video. The observation that many users were downloading the same content led to the development
of content delivery/distribution networks (CDNs). CDNs cache content closer to the users to reduce
inter-provider traffic, and improve the quality of experience for users by reducing server congestion
through load balancing requests over multiple content replicas. In a content-centric world,
communications are no longer based around interconnecting end-points, but are concerned with
what is to be retrieved rather than where it is located. CDNs achieve this by building overlays on top
of the network layer but recent research has taken matters a stage further by routing requests for
named content to caches which are dynamically maintained by the network nodes themselves,
rather than having predefined locations of the content, pushed a priori based on predicted demand.
Such an approach represents a basic paradigm shift for the Internet.
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Although Content/Information Centric Networking has received enormous attention recently, the
approach, like CDNs, is limited to non-interactive content where identical copies are distributed to
multiple consumers. Cloud computing on the other hand has been developed to deliver applications
and services in a scalable manner to cope with elasticity of demand for computing resources,
exploiting economies of scale in multi-tenancy data centres. Just as with CDN services in the past,
cloud resources are now being deployed in local ISPs and other distributed network locations,
presenting a much more complex problem than can be solved with generalised resource assignment
algorithms in individual data centres or cloud infrastructures with only a handful of geographical
locations. While new networking paradigms for intra-data-centre communications have been
developed to facilitate the distribution of data-processing intensive applications over a flexible
number of computing devices within the same data centre, these techniques and technologies are
limited to specific data centres and services and have not been rolled out to the wider-area Internet.
Although cloud federation has received a lot of attention in recent years the techniques have been
aimed at improving scalability for cloud-based applications and they does not address the problem of
fine grained localisation of processing nodes in the network between the federated clouds.

Many resource-demanding services — including personalised real-time video, games or processing of
high bandwidth streams for safety and health-care monitoring — are not suited to being centralised in
a relatively small number of remote data centres where high network delays and low throughput can
have a serious impact of the QoE experienced by many users. Application/service providers do not
have access to an infrastructure to position application logic close enough to users/data sources to
meet tight QoS constraints or to avoid congested or expensive network paths for high bandwidth
flows to centralised locations. Media organisation logic, media/Ul rendering services and media
interaction mechanisms remain centralised, hard to query, impossible to mix and inflexible to
provision.

Up until now service deployment and data networking issues have always been treated in isolation
by the research community as well as in the commercial reality of deployed products and services.
The vision of the FUSION project is to develop a new approach of service-centric networking where
the boundary between service and network layers, between cloud-computing and wide-area data
communications functions is broken down to deliver seamless service-oriented networking. In the
context of the FUSION project services are seen as chains of distributed data processing elements
interleaved by network transmission, potentially over a wide-area. FUSION will develop a new
networking architecture and protocols that are designed to natively support efficient service
provisioning and execution at the service-layer combined with native service-centric routing and load
balancing within the network layer for the most demanding multimedia services. Solving these issues
involves a combination of service and network engineering disciplines. Dynamically constructed
service execution topologies must be mapped to the underlying network and processing nodes.

The FUSION project allows an operator to make the evolution from a content-driven network
architecture towards a service-centric network. It will provide for efficient service provisioning and
service orchestration which in turn will enable for faster development cycles and time-to-market. An
important dimension of the solution is how to decouple responsibility between applications and the
underlying infrastructure to control service instantiation, routing and execution such that service
requirements are met while network and infrastructure utilisation is efficient.

1.2.2 FUSION approach

FUSION foresees a situation where large numbers of service nodes are distributed throughout the
Internet: in access points close to the users; co-located with routers within an ISP’s network; in local
data-centres owned and operated by ISPs; and in traditional data-centres and service farms operated
by cloud and service providers. Given this rich set of resources, FUSION will enable services to be
flexibly deployed over this distributed service-execution platform and will optimise the location of
individual service component instances according to the performance requirements of the
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application, the location of its users and according to the experienced demand. Replicas of service
components may be provisioned according to predicted load levels and furthermore they can be
instantiated on-the-fly to deal with demand elasticity.

To meet the performance targets mentioned above as well as to support resilience in case of service
node failure or network or service-level congestion there will be many replicas of the same service
component instance running throughout the Internet and the users, the service providers or the
network itself must be able to select an appropriate one. FUSION adopts a service-centric networking
approach and will deploy a service-anycast capability in the network so that service instance
selection can be optimised on the grounds of proximity and network load, maximising their
availability. Furthermore, FUSION will develop lightweight protocols to also allow server load to be
taken into account so that load balancing algorithms running in service-centric routers can discover
the best service instances to route user request towards.

Cooperation between the service and network layers is key to the success of the FUSION vision and
the project intends to innovate in this area too. Network-driven instantiation and replication of
service components to reduce network congestion and adapt to highly dynamic fluctuations in usage
patterns will be developed. In addition, FUSION will research and develop a service-node execution
platform leveraging the state-of-the art in novel, container-based virtualisation technologies that
simplify network-driven session instantiation, replication and migration.

1.2.3 Objectives

Objective 1: Define a combined service and network architecture that exploits the synergies
between both and which provides significant improvements in latency and scalability. This will
enable a new class of decentralised, high-bandwidth-and-processing, real-time applications. In
addition to taking into account the roles and needs of content/service- and network/infrastructure
providers, this architecture will constitute one more step towards ISPs as content distributors. This
can be broken down in four technical goals:

* Design an elastic, network-driven service architecture that supports distributed processing
elements interconnected by the public Internet, rather than the tightly controlled environments
typical of current data centre architectures. This architecture will support dynamic service
instantiation according to detected/monitored user demands (including flash crowds, service
urgency and interactivity). In addition, this architecture will be versatile enough to scale
elastically with heterogeneous resources (networking, servers and specialised hardware for
service processing acceleration).

* Design interfaces between the application and the platform provider which are rich enough to
accurately convey application requirements, yet simple and abstract enough to apply to all
applications and be usable by all application providers.

* Design and evaluate a scalable service naming scheme that allows intelligent optimisation of
routing at both the network and service management layers.

* Design a migration path from current cloud architectures and towards our proposed network-
driven service architecture.

The metrics by which the success of the project can be assessed against this objective and technical
goals are: whether the architecture can deal with dynamically growing or shrinking service
component instances; the scalability of the solution with respect to the number of component
instances and the number of attributes needed to convey application requirements.

Objective 2: Provide new network protocols that improve the performance of the aforementioned
architecture compared to current state-of-the-art infrastructure for demanding applications
requiring large amounts of computation and bandwidth resources over a wide geographic area.
These protocols will operate at both network and service layers and within the requirements set by
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the application, and will be designed to be cost-effective and respond to changing network and/or
infrastructure availability conditions. This objective can be broken down in three technical goals:

* Design a routing protocol that selects the best available instance for a user session. This protocol
will perform load balancing between user requests, and ensure that a user session is consistently
routed to the same service instance.

* Research the design of hybrid link-state/distance-vector routing protocols. To this end, we will
carry out a comprehensive evaluation of compact routing algorithms for service routing. The
resulting trade-offs will drive the design of novel, hybrid routing schemes using complementary
routing algorithms for different endpoints.

* Design network layer protocols to enable the efficient registration and aggregation of service
instance status updates distributed over the network.

Verifiable metrics for this objective: the accuracy of selecting optimal service instances; the load
dispersion across multiple instances of the same component; the routing overhead and stretch; and
the amount of service data that needs to be maintained according to the frequency and quantity of
routing updates.

Objective 3: In order to support our network-driven service architecture, computation elements
themselves will have to be significantly improved. In addition to markedly reducing the network
impact of its distributed computations, our service architecture will be able to flexibly manipulate
virtual computation units, provide personalised services and deal with complex service definitions.
This can be broken down in four technical goals:

* Design intelligent service placement algorithms that dynamically adapt to make efficient use of
resources at both the network and service layers, i.e. service instantiation will be optimised by
considering network and computational resource availability. This will be achieved by taking
workflow representations of all required services and mapping them to the available network
and computation resources.

* Design lightweight, container-based resource isolation techniques for the instantiation of
services with appropriate CPU, RAM, storage, and network resource guarantees. These
container-based isolation techniques will apply to heterogeneous hardware systems and provide
low start-up and tear-down overhead and application response times.

* Define techniques to provide increased flexibility and efficient network support for personalised
services.

* Design a service description language that includes non-functional service constraints and an
orchestration language that is able to describe an application in terms of service components
and interactions.

Verifiable metrics for this objective: the network and service performance metrics (e.g. response
time) delivered by servers/service instances at the selected locations; the overhead (memory, CPU
load, etc.) of the selected lightweight virtualisation techniques; the time to establish and tear-down
service instances; the number of parameters required to capture personalisation profiles.

1.2.4 Expected results

In order to meet the aforementioned objectives, FUSION will concentrate on research advances in
the areas mentioned below to produce the following results:

* A new service-centric paradigm for the future Internet architecture, meeting head-on the
challenges beyond content caching and enabling a fundamental migration from content to
services, facilitating the deployment and delivery of low-latency, data- and processing intensive,
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interactive and personalised services to be deployed at a large scale over a public service-centric
Internet.

* Native network support for service routing protocols based on service names rather than
locators, with service location- and instance-independent naming and addressing schemes as a
side result.

* A service-oriented anycast capability inherently supported by the networking infrastructure so
that service invocation is no longer tied to addressing specific servers. This will enable replication
and load-balancing, and will provide the flexibility of dynamic instantiation of service instances,
therefore providing support for elasticity-on-demand directly in the network substrate.

* Algorithms to optimise service instance placement, allowing processing capabilities to be placed
where they are needed: close to users and in strategic network locations, rather than being
limited by the extremely coarse-grained localisation afforded by today’s cloud computing
infrastructures. Fine-grained targeting of service instance placement reduces latency, improves
bandwidth, and reduces network load, ultimately benefiting both service providers and end
users.

* An architecture, platform and APIs to enable service node resources across multiple
infrastructure providers to be seamlessly made available to application developers through a
platform provider who supports the FUSION dynamic service deployment and localisation
algorithms.

* Innovative approaches to bridge the gap between data-centre and Internet interworking.
Internal data-centre routing and resource allocation strategies cannot be simply applied in the
wide-area Internet due to constrained resources and a lack of knowledge of inter-data-centre
capabilities. Furthermore, since their only tool at the present is a limited form of limited cloud
federation for virtual machine replication, current solutions are unable to directly address
network capacity shortages by dynamically deploying service processing resources.

* A framework for cooperation between network and service layer algorithms and functions,
including the definition of specific lightweight protocols to inform the network layer of server
capabilities and dynamic load, and allowing network-driven hotspot detection and service-
component instantiation.

* Protocols and algorithms to enable interworking across provider boundaries, including scalable
approaches based on compact routing to allow service instance state to be conveyed between
provider domains.

* Service execution platform technologies based upon simple and lightweight container-based
virtualisation means running over heterogeneous hardware. This will reduce the overhead for
dynamic instantiation of processor- and data-intensive service-component instances, facilitating
a move from the cloud hosted web applications of today to processing and bandwidth intensive
real-time services.

* Service deployment mechanisms across widely distributed nodes, including programming
interfaces and APIs to convey complex service manifests in terms of service deployment graphs
that capture service constraints and performance targets.

* Innovative use cases deployed in real testbed environments to evaluate and demonstrate the
interoperation of service localisation algorithms, dynamic service-component instantiation and
native service-centric routing for representative services.
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1.2.5 Benefits of the FUSION approach to service-oriented networking

1.2.5.1 Business aspects

Operators are no longer “dumb pipe” providers, but offer service hosting capacity with
additional advantages: geolocality, low-latency.

Lower costs for operation and maintenance since this can be done centralised by larger service
provider and distributed devices, not a central server at the service provider's office basement
(lowers barrier for smaller players to roll out their own services without having to invest in their
own infrastructure). While this is a general feature of cloud computing, FUSION also adds more
flexibility, locality, reduced latency, etc.

1.2.5.2 Optimality/efficiency

Bandwidth reduction (by smarter placement). FUSION increases degree of b/w reduction
compared to today's coarser-granularity DCs.

Response time/latency (and jitter) reduction (for better QoE with respect to interactive
applications). FUSION increases degree of latency reduction compared to today's coarser-
granularity DCs.

Fine-grained server instantiation/selection taking into account the clients' location (and the
service instance if it is a stateful service).

Automated optimisation of b/w, latency, etc. (at deployment and run-time).

Capability to exploit appropriate accelerators (GPUs, encoders, etc.) FUSION’s added value in this
area includes more types of hardware accelerator, smarter awareness and selection of
accelerators, resource description, APls etc.

Capability to efficiently share sources and resources (stored 3D objects, textures, decoded video
frames, GPU buffers, transcoding function, subtitling service, etc.). These are new FUSION
features - through service manifest definition, orchestration techniques. Current APIs and
software packages are too abstract, high-level or low-level to provide the right handles to the
resources.

1.2.5.3 Dynamicity, flexibility and scalability

Flexible deployment infrastructure (more suitable/fine grained for real-time, interactive
applications than today's clouds). FUSION increases the degree of flexibility compared to today's
coarser-granularity DCs.

Automatic service migration (or load balancing between instances) to rebalance
performance/processing depending on the number of concurrent players or users connected to
the game or conference call, and their location.

Scaling running service instances up or down, based on the demand (short-term) and success
(long-term) of the application. While this is also applicable of today’s cloud infrastructures
FUSION orchestration algorithms will enable service scaling across multiple execution zones for
service scaling on a global scale.

Client/user mobility (migrate service as users move). It should be noted that FUSION will work on
algorithms/heuristics and not migration mechanics/technology.

JIT deployment (cf. situation-based services in FRV, games), even triggered at service-request
time. FUSION will work on algorithms/heuristics and evaluation/measurements of dynamic
deployment technology.
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* Dynamic application behaviour: rapidly changing interactions between sources, clients and
services.

* Resilience/robustness: to congestion, failures, etc. at both network and service levels. Through
server replication and the use of a network anycast (and/or late binding) paradigm for server
selection/routing. FUSION will provide scalability, load balancing etc. compared to today's
solutions, e.g. CloudFlare.

1.2.5.4 Distributed aspect

* Enable smarter placement: reduce roundtrip times, balance load, save bandwidth, etc. These are
new FUSION features, thanks to finer-grained execution zones, smart deployment, scalability and
load balancing.

1.2.5.5 Offer performance/QoE guarantees/SLAs to application developers

* Finer grained description of deployment constraints, including dynamic aspects.

* Guarantees covering network as well as the execution platform performance.

Copyright © FUSION Consortium, December 2013



D2.1 Service-centric networking architecture, security issues and initial interface Page 14 of 127
specifications

2. USE CASES

In this section, we will introduce the types of applications we want to support with the FUSION
architecture and platform, and describe a number of key use cases we will focus on in this project.
We will use these use cases to extract a number of key attributes and requirements that should be
taken into account when designing the FUSION architecture.

2.1 Personal Media Experience
2.1.1 Media Dashboard

A core trend in digital media consumption is that PCs, DVD players and consoles replaced more and
more by mobile devices like tablets or smart phones.

Another trend in digital media consumption is the growing importance of unified access to different
media, for example accessing Video on Demand (VoD), music, TV, a private photo library or games in
one place. For example, unified Uls like the Xbox 360 dashboard® where many media types are in one
place are today's standard and expected especially from the younger generation of users. Also the
visual quality of such dashboards will continue to improve. For example 3D graphics using 3D
rotations and high-quality rendering effects like particle effects are today's quality standard both on
consoles and mobile devices.

Medias are often consumed together: Families, couples and friends enjoy watching movies or
browsing private photos together or play games together. For the future we expect that shared live
media experience expands also to people being at different locations. Already today many people
play multi-player games together remotely. It is natural that people also want to watch movies
together or browse a private photo library when not being at the same location.

For example, a girl-and boyfriend are either sitting on their sofa together at home, or they may be at
different locations but want to share their evening together. In the latter case they may start not
only a via video chat, but also enter a shared virtual 3D room dashboard:

* She can put her today's photos into that shared 3D room.

* They browse together the photos and talk about them via video chat.

* She can point out particular photos or persons on these photos by highlighting them in the
shared 3D room.

* They browse together the episodes of their favourite series and choose one.

* They watch a streamed series episode together while video chatting about the episode.

* They play a cooperative multi-player game together.

* They watch a friend playing a game.

The following image is a mock-up of such a media consumption dashboard:

! https://www.youtube.com/watch?v=3z0X7_67dIQ
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Figure 1: Media Dashboard Example

FUSION can help in multiple ways to let these scenarios become reality:

First, running a virtual 3D room application displaying multiple different video streams at an end
user's device may be impossible or at least inefficient because these streams have to be
delivered all the way to the device and therefore allocate a lot of bandwidth. By moving the
rendering of the Ul nearer to the sources and only sending the result over the network,
bandwidth consumption can be reduced and also devices with lower bandwidth connection
would become reachable. Furthermore, depending on the application or service used, parts of
the computations and rendering steps could be reused by other users (simple example would be
a high definition to low definition conversion service of a popular TV channel), so that the
amount of resources can be significantly reduced.

Secondly, many of these device (smart phone, tablet, TV, STB, etc.) are limited in terms of
compute and rendering capabilities. Having many complex interactive (3D) applications running
smoothly on the device itself is in some cases infeasible.

The above mentioned benefits require on the other hand to intelligently choose an appropriate
location to perform the processing; the more naive approach to deploy these services on a
centralised data centre or cloud will typically result in unacceptable response times as well as
jitter, depending on the distance, the network configuration and contention.. So the key will be
to find the optimal location in the network in order to have a good balance between response
times and compute capabilities.

By offering the possibility of dynamic service orchestration, the required services can easily be
installed and instantiated on demand. So if for example one user wants to watch a show on a less
powerful mobile device with a low screen resolution, an automatic downscaling service can be
inserted in the network between the video source service and the user's device.

Common standardised interfaces allow for easier development of different kinds of services, be
it a simple video streaming service, a request and response news ticker or a complex game. By
having a common architecture the interoperability of these services is significantly improved,
providing easier integration and therefore higher efficiency in development thus shorter time-to-
market.
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* Another benefit on business side is the dynamic allocation of already existing resources: A
service operator does not have to buy or rent server infrastructure front up for a certain time but
can directly deploy to the network which itself chooses the best location to do the work. It is
even possible to only tell FUSION where to find the resources and the orchestration decides
when to start up new servers or scaling is required. So the distribution and maintenance costs
may be much lower, allowing also small and medium size enterprises to distribute their services
(similar to Apple's iPhone where the entrance hurdles are also very low).

2.1.2 Omni-view

In the omni-view scenario, a user can virtually look around and walk through a particular event (e.g.,
the Olympics, a soccer game, cycling, a music festival, etc.), allowing the user to completely immerse
himself in the experience. High-resolution and ultra-high resolution videos from multiple angles and
locations are seamlessly stitched together and augmented with additional information in real-time.
Each user can personalise his experience of the event by either manually controlling the scene, or by
letting a virtual director create an experience specifically for that user, based on his preferences. This
may include tracking a specific player or athlete in detail, overlaying the scene with specific
background information, etc.

Figure 2: Omni-view example [FASCINATE]

Streaming all relevant high-resolution video feeds to all end devices (smart phones, tablets, TVs, etc.)
and seamlessly blending them into an augmented virtual 3D environment across multiple screens on
these devices themselves is clearly infeasible. By doing all this blending and stitching in the network,
the high-resolution feeds as well as several rendering steps can be shared across many users, saving
huge amounts of bandwidth as well as compute resources. Running these applications in the
network also enables significantly more complex rendering operations, resulting in a highly
immersive experience. A crucial aspect regarding this immersive experience however is smooth
interactivity; the end user should be able to interact with the virtual scene as if it was running locally.

FUSION contributes to this scenario in several ways, including the following:

* By optimally placing the services in the network with respect to the video feeds, the other
services as well as the end users, both the bandwidth as well as the latency of these high-
resolution feeds can be drastically reduced.

* By placing the rendering service close to the end user in combination with the FUSION routing
capabilities, FUSION enables a smooth interactivity by creating a low latency communication
channel between the rendering service and the devices of the end user. Also, if the user travels
to another location, he will continue enjoying the same smooth experience.

* As this scenario requires a large of advanced dedicated functionality (3D rendering, stitching,
video encoding and decoding, etc.), FUSION can easily take these requirements into account and
map these services on execution zones that provide these advanced functions through specific
accelerators (GPUs, hardware encoders, etc.).
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* Because of the temporary nature of the events to which this scenario applies, it is crucial that the
corresponding services can be deployed and removed quickly in large amounts. Indeed, the
services are only required for the duration of the event, which could range from a few hours
once a day, to a few days once every few years, but when they are active, they could easily need
to serve several millions of users (e.g., the Olympics) at the same time.

* The resource-demanding nature of this scenario in combination with this extreme time-varying
behaviour would make it extremely expensive for individual organisations to each support and
provide the necessary infrastructure to support this use case. However, many of these events
will basically use the same set of resources and share the same set of requirements.
Consequently, having a common deployment infrastructure that is capable of handling these
events would be extremely beneficial to these parties, as they no longer have to worry anymore
about building and managing such an infrastructure themselves.

2.1.3 Immersive Communication

Similarly to the omni-view scenario, the goal of this scenario is to provide a more immersive
communication experience between multiple parties, which may be spread all across the world.
Whereas classic video conferences, including the telepresence conferences, are typically very static
and limited, the goal of this scenario is to blend the (3D) camera feeds from all parties into a very
dynamic virtual environment, possibly augmented with additional information (e.g., a slideshow is
integrated in the virtual scene). The virtual environment is constantly modified, for example
according to who is talking, non-verbal expressions as well as gestures. Additionally, the entire scene
can be fully personalised either manually or automatically for each individual user, including users
that only watch the conference without actively participating.

Figure 3: Immersive communication example

Although, this scenario shares many commonalities with the omni-view scenario, there are a few key
differences. First, though the camera feeds may also be plentiful and in high-resolution, the
requirements will typically be an order of magnitude lower than in a full-fletched omni-view
scenario.

On the other hand, the synchronisation of all feeds and all rendered scenes across all parties will
likely be much more important in this scenario than in the omni-view scenario, especially as the
feeds will be coming from remote locations across the globe, rather than from one particular event.

The contributions of FUSION with respect to this scenario are similar to those from the omni-view
scenario, though they differ in a number of ways:

¢ Although this scenario has similar on-demand requirements, the scales are completely different.
In the omni-view scenario, there will typically be a limited number of medium-sized to big events
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where up to millions of users are connected to, whereas in this scenario, there will typically be
many sessions running in parallel with each other, but each involving only a handful of users,
which may still be spread across the globe.

* As the real-time feeds from each user needs to be blended seamlessly in one virtual
environment, and as these feeds may come from all across the globe, placement of each service
involved in a particular session, as well as the routing and sharing of these feeds is of extreme
importance. This differs fundamentally from WebRTC for example, where all feeds need to be
sent to all other parties, limiting the quality and amount of people that can participate in one (let
alone more) conference session(s).

2.1.3.1 Multi-Screen

The multi-screen scenario can relatively easily be applied to almost all of the other scenarios where
all the rendering is done by FUSION services in the network. The multi-screen scenario means that
one or more end users can connect to the same service via multiple screen devices. There exist two
basic models for doing multi-screen. The simplest model is the screen replication model, where the
same output is send to multiple screen devices, possibly downscaled and in a different format. The
second model is the side-channel model, in which the service has more than one rendering output on
to which different screen devices can be attached. Although this has similarities with the omni-view
scenario, the sharing here is often done more on a personal level and each rendered output may
contain very different information. For example, the main output may be overall soccer game,
whereas the second output may be background information regarding one or more players.

2.1.3.2 Real-World Tagging

In this use case tourists use an app that overlays touristic information about the observed
monuments and events on their head-mounted device. The video feed from the front camera on the
wearable device is streamed to object detection algorithms running on cloud infrastructure at the
network edge, where the appropriate content and position of the overlay items is calculated and
returned to the wearable device (see Figure 4). The service is extremely personalised, and tailors the
overlay content to the user’s profile. For example, it shows hints and tips of friends who have visited
this location in the past and added tags to monuments.

= =
Figure 4: A Real-Life Tagging Application [PAJA11]
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Network operators have anticipated on the massive demand for mobile bandwidth by WhatsApp
messages, tweets, Facebook sharing and the video upload by deploying additional mobile 4G
antenna towers. Previous experience has however learned that adding towers alone won’t meet the
data demand, so they have further increased capacity through local Wi-Fi hotspots and femtocells
deployed in residential set top-boxes [QSC13]. Network management automatically redirects the
user to the most appropriate interface. Switching between these different technologies, user
movement patterns and wireless channel contentions result in continuously varying latency and
bandwidth of the device-cloud connection.

The FUSION platform monitors these network statistics. As the cloud infrastructure of the tourist
guide has limited capacity, new service instances are deployed according to the demand. For fast
deployment, the service instances are not identical replicas, but only contain the data of nearby
tourist attractions. The FUSION routing ensures that each user is routed to the closest replica to
meet stringent latency requirements.

2.2 Public Safety
2.2.1 First Responder Video

The public safety ecosystem is currently be revolutionised by the introduction of LTE for first
responders [MOBI11, NETW11]. The use of broadband mobile connectivity allows connecting more
video feeds into the public safety information system, and allows connecting more users to those
feeds (control rooms, local command centres and police/fire-fighting/ambulance first responders).
Some feeds can even be deployed for a shorter period of time (e.g. during a major sports event or
demonstration) and other users could be connected as well (e.g. volunteer stewards for crowd
control).

With the connectivity being solved, the next challenge is to translate all those raw video feeds and
interaction into relevant information. A policeman doesn't have the time in the midst of a critical
situation to browse through some menus to get access to the right camera feed showing the right
tactical information to assess the situation, nor is it possible to constantly monitor all feeds manually.
We thus need a range of analytics that can analyse these feeds, identify and signal issues to the
relevant parties when they occur.
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Figure 5: First Responder Video Scenario
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For this reason it is important to be able to deploy 'situation-based' services. These situation-based
services combine the deployment of video analytics functionality (crowd/traffic analysis, license plate
recognition, smoke detection etc.) with video rendering and content augmentation, to optimally
reduce the cognitive load for first responders and present them with the relevant information.
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Some important behavioural aspects of this use case are (i) that the set of video streams, first
responders, control centres, required analytics, access to archived data, etc. constantly change from
incident to incident, (ii) that the occurrence and size of these incidents is unknown beforehand, and
(iii) that the network capacity (including the bandwidth available in the mobile cells), plays a crucial
role in selecting the most optimal set of streams.

Evidently, this is an environment where a scalable, dynamic FUSION platform will play a vital role. As
situations can change quite rapidly, different teams need to collaborate on diverse video feeds,
analytic functions need to be inserted quickly in the processing pipeline and different compositions
and augmentations of the videos are needed. This cannot be solved with the traditional coarse-
grained service platforms currently available. Also, the network-aware routing functionality of
FUSION will be key to ensure smooth interactivity across multiple mobile networks. Furthermore, as
networks in this market are often private and dedicated, this will allow for an easier migration path
to include FUSION functionality.

2.2.2 Surveillance

This scenario involves the continuous monitoring of key public buildings and places, squares, roads,
etc. and involves a continuous monitoring of a fixed number of locations in near real-time. Although
by itself this class of use cases has limited need for many FUSION-specific features it could take
advantage of the accelerated hardware functionality for low-power and high-efficiency processing of
the multitude of surveillance cameras and they could trigger the first-responder scenario, for
example when a hazard is detected.

2.2.3 Face Recognition

In this scenario, the face of a person is recognised automatically when that person wants to enter or
leave a building or a room. A picture of the person is taken and uploaded to the instance that is
handling the request, in combination with the identification of the building or room. To keep the
time to recognise the service short, FUSION will automatically route the request to the closest
available instance running in the network. The service running in the network has direct access to the
entire database that is relevant for that location, resulting in a fast processing of the request. The
service sends back the result of the request to the face recognition device, which then either grants
or forbids access to the location.

Some key benefits that FUSION will provide is the smart routing to the best instance that is capable
of handling the request, and scale up and down when needed. This could include predeploying
instances during periods of high activity (e.g., in the morning, when people enter the building when
they arrive for work). FUSION will take care of all the management and infrastructure needed to
deploy this type of service.

2.2.4 Major Sports Event

This use case is similar to the first-responder video scenario, but in a different setting. Example
sports events include soccer games, the Olympics or other big championships. The scenario enables
security and first responders to quickly identify and act on hazardous situations. Some key aspects of
these scenarios are that they are very event-based (ad hoc situations), where the service only needs
to be activated when the event occurs, and extra services need to be deployed very quickly and
seamlessly when a hazard occurs.

2.2.5 Key Public Places

These scenarios capture the more classical surveillance use cases. However, deploying these services
on the FUSION infrastructure would enable a flexible deployment of more advanced surveillance
services on-the-fly, based on the analytics produced by a number of background surveillance
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services. The first-responder scenario could even be triggered automatically based on automatically
detected hazards.

2.3 Gaming

Typical overall characteristics include potentially a lot of heavy rendering, which requires (powerful)
GPU for efficient rendering, and extremely low latency depending on the type of game (first-person
shooter versus a turn-based game).

2.4 Additional Service Examples

Additional examples of possible services are presented in Appendix A: Service Components in page
109. Examples of how to compose these services in media usage scenarios can be found in Appendix
B: 7 Service Configuration Scenarios in page 113.

2.5 Summary of example use cases

The table below analyses the example use cases described in the previous sections against the
FUSION benefits introduced in section 1.2.5. Each use case is marked from 1 to 5 against each of the
benefits/features of the FUSION approach to service oriented networking.

Media Immers Real First- Client:
Dashbo Omni- . Multi- Surveill | Respon Cloud
. ive World based .
ard view Comms Screen Taggin ance der Gamin Gaming
(EPG) BEing Video J
* Business aspects
* Operators not "dumb pipe" providers 4 3 5 5 1 3 3 5
* Lowers barrier for smaller players 4 1 4 4 5 3 2 4 5
* Optimality/efficiency
* Bandwidth reduction (by smarter placement) 5 5 4 5 5 3 4 2 3
* Response time/latency (and jitter) reduction 5 5 5 2-3 5 3 4 4 5
* Fine-grained server instantiation/selection 5 2 4 3-4 3 4 2 3 5
* Automated optimisation of b/w, latency, etc. 5 5 5 4 5 4 3 4 5
* Exploit appropriate accelerators 5 5 4 5 5 no 1 5
* Efficiently share sources and resources 5 3 4 5 5 2 1 2 5
* Dynamicity, flexibility and scalability
* Flexible deployment infrastructure 3 4 5 5 4 3 3 4 5
% . . S .
Automatm service migration (or load balancing 4 1 5 3.2 5 3 5 5 5
between instances)
* Scalability 4 1 5 4-5 5 3 4 4 5
% L . . .
Client/user mobility (migrate service as users 4 5 5 5 5 4 "o 5 1
move)
*JIT deployment 4 4 4 4 no 3 5
* Dynamic application behaviour 5 2 1 2 2 1
* Resilience/robustness 3 4 2 5 5 3 2 2 5
* Distributed aspect
* Smarter placement 5 4 5 4 5 4 4 3 5
*
Pe.rfor'mance/QoE guarantees/SLAs to 3 5 3 34 5 4 3 3 5
application developers
* Combination of FUSION benefits 5 4 5 4 5 3 3 4 5

Table 1: Summary of FUSION example use cases
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2.6 Key Attributes and Requirements

The goal of this section is to identify a number of key attributes and requirements from the set of use
case scenarios we described in the previous section, and to highlight why current infrastructures and
platforms are insufficient for many of these use case scenarios.

We now derive attributes and requirements from the use cases. The Media Dashboard service is an
example of a streaming service that is stateful for the duration of the session. The state could also
partially be made permanent outside of FUSION so that the next time the end user reconnects to
(another instance of) the EPG service, his last state is restored and the user can continue where he
had left off. The sessions will typically last for minutes to hours, and in the simple case, one can
expect that there is no real inter-service interaction and that all user sessions are independent from
each other (so there is no real coupling apart from the various sources).

In terms of the input and output channels, there will typically be a large number of various kinds of
input channels and sources (typically video streams), which can change quite dynamically and
frequently, for example when the end users is flicking through the video broadcast channels. The
sources themselves can be either coming from other FUSION services or come from outside of
FUSION (e.g., a YouTube video). The number of output channels will typically be small (even in the
multi-screen or shared viewing scenario), and will typically be a video stream, which remains active
as long as the end user is connected via the corresponding device. The output is typically a non-
FUSION destination (e.g., a thin client installed on a tablet or STB). The feedback channel is important
to mention, it is a message-based communication channel with very strict latency requirements for
sending the user interaction to the EPG service running in the network.

The key functional blocks include lots of video decoding, video encoding and (3D) rendering. One of
the key requirements is a low round-trip latency between pressing a button on the end device and
seeing the interaction on the screen. Depending on the type of interaction, noticeable latencies will
not be tolerated by the end user.

In the same way, we can explore the key attributes and requirements of our other use cases, and
extract those elements common to all of them. These are reported below.

2.6.1 Key Attributes

The subsections below identify the key attributes that define the scenarios above and reflect various
aspects that are important for FUSION.

2.6.1.1 Service Type

In FUSION, we will support both the classical request-response as well as streaming services. With
request-response services, the service sessions (see deliverable D3.1 [D3.1]) are often extremely
short-lived and typically involve one or more request messages sent from the client to the service,
the service computing a response, and subsequently sending back the response to the client.

2.6.1.1.1 Interactivity

Service sessions, especially involving streaming instances, can be either interactive or non-
interactive. In the former case, the client can interact in real-time with the service instance running
in a FUSION domain, thereby changing the content that is streamed back to the client. An example is
the EPG scenario. In the latter case, the client cannot (directly) interact with the service instance that
is running in a FUSION domain; once the request is made, the instance starts streaming the content
back to the client, and the client cannot change what is streamed. An example is live streaming or
adaptive streaming.
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2.6.1.1.2 State

Service instances can be either stateful or stateless. With stateless instances, the client can connect
to another service instance at any time, even with streaming services. With stateful instances, the
maintains some session state that is specific for the session it is handling, and the client cannot
seamlessly be transferred to another instance without first transferring the session state as well.
Interactive streaming services will typically be stateful, whereas request-response as well as non-
interactive streaming services in many cases can be made stateless. Stateless service instances are
preferred, as this increases the overall service request routing and simplifies migration.

While FUSION should be as flexible as possible and avoid any strict classification of service types, it
may be still useful to classify services pragmatically for analysing typical use-cases. A basic
classification may be stateful versus stateless services:

Minimal
number of
service . . First request
. . . Service Service .
Kind of service instances response time

Replication | Instantiation

required for optimisation
N > 0 service
users
Technically Optional for .
. Instantiate
Identical to better .
Stateless 1 . additional
service performance .
services

instantiation

Required for | Pre-instantiate
each service service
user instances

Usually not

Stateful N
atetu needed

Table 2. Stateful vs. Stateless Services

2.6.1.1.3 Session Duration

The duration of the service sessions can vary from extremely short-lived sessions to long-lived
sessions that can last for minutes, hours, or even days. Request-response services with typically be
short-lived, whereas streaming services will typically be long-lived, though this does not always have
to be the case.

2.6.1.2 Key Functional Blocks

Many use case scenarios share one or more common key functional blocks, for which often
specialised hardware can be used for higher efficiency. Examples of these functional blocks include
video encoding and decoding blocks, 3D rendering, etc. Providing the necessary infrastructure for
leveraging these functional blocks is an important aspect of FUSION.

2.6.1.2.1 Input and Output Channels

Services may have rely on other (FUSION or non-FUSION) services or sources for providing their
services. To facilitate an optimal placement of this service with respect to its sources (or
destinations), it is important that FUSION should be made aware of them. These sources (or
destinations) can/should be characterised in a number of ways:

* Cardinality: how many input/output channels does this service (potentially) have;
* Type: is the inter-service communication rather message based (sporadic events, bursty,
etc.), or does it involve a continuous data stream;
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* Requirements: what are the inter-service communication requirements, for example in
terms of latency and bandwidth;

* Dynamicity: how often do you want to (re/dis)connect to each source, or how often can
other services (dis)connect;

* Scope: are the sources coming from outside FUSION or generated by other FUSION service
instances (similarly for the output channels);

* Coupling: how loosely or tightly are the different services coupled to each other.

Each of these may have an impact on the placement and routing in between these services. One of
the main difficulties is that in many cases, it is not known how many and where these input or output
services are located.

2.6.1.2.2 Feedback Channels

A special input channel is the feedback channel, which is a communication channel in the case of
interactive services between the client and the service instances, allowing the client to interact in
real-time with the service instance running in a FUSION domain.

2.6.2 Key Requirements

This section discusses the key requirements FUSION should be able to support considering the use
case scenarios discussed previously. The requirements have been grouped into three main
categories:

2.6.2.1 User Requirements
Based on the scenarios discussed above, we drew the following conclusions:

* Digital media consumption on various devices can be implemented by connected distributed
service components.

* Service components may run on same server or close servers (e.g. game client output to
video encoder), or at distant locations (e.g. game client in cloud = 3D room client at ISP).

* Media views may be nested, for example a private 3D Ul may contain shared 3D room, which
may contain a VoD library, which may contain many live streams of different videos.

* Rendering may be done either

o on a powerful end-user devices (e.g. PC), especially final composition or game
clients, or,

o only displayed on a less powerful end-user device (e.g. mobile devices, TV), while
rendering is done on a server, and the video is streamed to the end-user device. The
disadvantage of this approach is a worse responsiveness, but may provide better
quality for low-performance end-user device.

Users want to use digital media as easily as possible: they prefer getting it from a single business
partner (see the success of stores like iTunes). They especially don't want to care about technical
details and about which others business parties are involved.

2.6.2.2 System Requirements

Many services will have both a number of specific software-related as well as hardware-related
requirements. The former set includes requirements in terms of OS, drivers, libraries, etc. The latter
set includes requirements like CPUs, memory, and specific accelerators (GPUs, hardware encoders,
etc.).
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2.6.2.2.1 Mobility

Today basically everything is mobile. People watch movies, play games, share images, are first
responders, basically do everything also mobile. Mobility is not a use-case itself, but a core feature of
many use-cases.

Mobility can benefit from connection handover. This may be outside the scope of FUSION but
FUSION should be open for service components choosing existing solutions at own will. If FUSION
would integrate such features, it may offer it as separate optional module.

Mobility can also benefit from stateful service instance migration by keeping service instances close
to the end-user device, for example a game server, game client or dashboard service following the
user while moving. This is not strictly required for FUSION to work, but for flexibility FUSION should
not be restrictive, and therefore allow services to support migration and make it easy for service
implementations to support it.

2.6.2.2.2 Service Instance Replication and Pre-Allocation

For both stateless and stateful services it makes sense to support replication (in case of stateless
services) and preallocation (in case of stateful services). The following diagrams show scenarios
without and with preallocation:

Execution zone in country A Execution zone in country B Execution zone in country A Execution zone in country B

-

@ ® & & o o ® ® & © & O

Stateless Stateless

Stateful Stateful

Figure 6: Preallocation Scenarios

2.6.2.2.3 Service Deployment

Deployment requires data from user-defined source (e.g. https URL to a package). At simplest the
package is at exactly one location. Deployment itself is probably not performance critical for most
services. Pre-deployment of possibly used services is possible.

2.6.2.2.4 Service Instantiation

Instantiation (including replication) is probably performance critical and will likely require local
deployment. Pre-instantiation of likely used services is possible.

2.6.2.2.5 Communication between services
We have identified three aspects of how services interact:

1. Who requests a connection from one service to another service?

2. Dataflow directions like forward, backwards or bidirectional. For example, a VoD client may
demand a video data stream, and a video chat client may provide a video data stream.

3. Live-time management: who owns the service instance? Ownership is usually the same
direction as the request direction, because whoever requested a service usually also owns
the service instance’. However, there may be exceptions, for example for utility service
components like video stream encoder and decoder.

’ Reference may be useful, for example like in DCOM?
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2.6.2.3 Execution Requirements

The execution requirements include both high-level attributes like availability, reliability, etc., as well
as more low-level attributes like bandwidth, latency, throughput, jitter, etc.

2.6.2.4 Business Requirements

Services will typically also have a set of business requirements that constrain the deployment of that
service in a FUSION domain. This includes the ability to define a number of policies concerning
security, privacy, cost, etc.

In the today's fast changing market, not only end-users but also service and application providers
prefer software platforms which make it easy to create new applications or provide new services.
Ideally the workflow for creating a new service (e.g. for example a dashboard extension or an avatar-
based community application) is simple:

You put together a new 3D application.

You press the "share" button.

You choose QoS, pricing and payment options.

You publish the URL (or send an access URL to others)
Any number of other persons can join.

v wN e

Today application creators do not have the time to deal too much with technical aspects like
programming, cloud services, distribution, load balancing, storage, configurations etc. This is the job
of software platform providers®. Core principle in today's software industry are Rapid Application
Development (RAD) and Agile Development, which are more and more a requirement for business
survival and keeping a competitive edge.

> An analogy may be today's approach for creating applications like “google docs” or a shop: As application
developer you don't worry about where the data is stored, how the data is synchronized, how scaling is
implemented etc., but use software packages like GFS.
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3. FUSION HIGH LEVEL ARCHITECTURE

3.1 Definitions

3.1.1 Service

A service is a set of functions provided by software or a system, usually accessible through an
application.

3.1.2 Atomic service

An atomic service is a service that cannot be further decomposed, and does not contain other
services. Base services are the finest level of granularity that is managed in FUSION [NGSO11].

3.1.3 Composite service

A composite service is composed of more than one service that can be a base or composite service. It
contains an execution sequence of the composed services [NGSO11].

3.1.4 Service instance

A single instantiation of a service (atomic or composite) running in an execution zone and identified
by a service identifier (servicelD). In FUSION there will usually be multiple instances of the same
service running in the same execution zone and across many execution zones, all identified by the
same servicelD.

3.1.5 Domain

A FUSION domain is a collection of execution zones and/or service routers that are managed by a
single authority. Domains may peer with other domains.

3.1.6 Orchestration domain

An orchestration domain consists of a FUSION orchestration entity and one or more execution zones
where the orchestrator may deploy and execute service instances forming either atomic or
composite services. An orchestration domain may own the computing resources forming the
execution zone or it may contract resources from a third party, e.g. a public cloud provider.

3.1.7 Service routing domain

A service routing domain consists of one or more service routers owned by a single administration.
This could be an ISP, an orchestration domain or a third party. See section 6 on Business Models for a
discussion of the various options. Service routing domains will usually peer with other service routing
domains to provide a global service routing plane for all FUSION services. However in some business
models a service routing domain may be associated with a single orchestrator which is also an ISP
providing services to local ISP customers only. In this case peering between service routing domains
may not be applicable.

3.1.8 Execution zone

A collection of computing resources at a physical location (e.g. data centre). The computing
resources may be owned by third parties but are managed by the FUSION system — specifically by a
FUSION orchestrator — and are available for deployment of FUSION service instances. The internal
network of an execution zone is assumed to be highly connected and extremely reliable (low-latency,
no packet loss). Execution zones are under the control of a single orchestration domain. A data
centre may support multiple execution zones belonging to multiple orchestration domains.
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3.1.9 Execution point

The specific physical or virtual environment in which a FUSION service instance is deployed within an
execution zone.

3.1.10 Service router

The entity responsible for forwarding service requests. The requests will be forwarded to other
routers until they reach the desired service instance in an execution zone.

3.1.11 Evaluator service

An evaluation service is a computational entity running in an execution zone that is able to score and
rate the execution zone and the execution points within that execution zone on various aspects of
the service manifest — for example availability of specialised hardware, network and computational
metrics for QoS estimation, the performance measured to nearby service instances. See Deliverable
D3.1 [D3.1] for more details.
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3.2 Overview of the FUSION system

The FUSION framework can be seen in Figure 7. Functionality is divided into 3 layers. At the lower
level IP routing forwards packets using traditional end-to-end protocols. At the top layer the
execution plane consists of all the execution zones where the services’ instances will run. In the
middle the service router layer will forward request from clients to the appropriate service instances.

The basic operation of the FUSION system is that orchestration domains - consisting of a potentially
large number of geographically distributed execution zones — deploy services on behalf of application
developers or service providers in one or more execution zones according to the expected demand
by service users. This is depicted in the upper layer of Figure 7. Service routing domains, consisting of
one or more service routers, are responsible for matching service requests referring to a service by
servicelD to execution zones containing running instances of the requested service. This is depicted
in the middle layer of Figure 7. Service routing is anycast in nature — the user simply requests a
service and it is the responsibility of the service routing plane to find the “best” available instance for
that request. Once a specific service instance in a specific execution zone has been selected for the
user request data plane communications take place in the data forwarding plane depicted by “IP
Routing” in the lower layer of Figure 7. Note that the physical data centres are depicted in the lower
IP routing layer as the data-plane communications will be directly between users and service
instances running in physical data centres, while the abstract representation of execution zones — a

logical partition of a data centre — are shown in the upper execution plane.
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Figure 7 - FUSION Framework

In the following section the functional entities required to implement the above system are defined
at a high level — the details are developed further in deliverables D3.1 and D4.1 [D3.1, D4.1].

A description of the FUSION service layer, including lifecycle and state management and user
interaction is described further in section 3.5. An overview of the execution plane consisting of
execution zones managed by a zone manager is described in section 3.6. The orchestration and
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execution functionality including service placement algorithms is introduced in section 3.7. All three
aspects are dealt with in more detail in deliverable D3.1 [D3.1].

The service networking architecture, covering the role of service routers, is discussed in section 3.8.
A range of options for service oriented networking are covered, ranging from DNS-like name
resolution approaches to clean-slate deployment of native service-oriented networking. Deliverable
D4.1 [D4.1] analyses the service networking functions in more detail drawing conclusions on specific
routing and forwarding protocol design options which will be developed in detail in the second year
of the project.

The interaction between the service execution and orchestration layer and the service networking
layer is a key aspects of the FUSION approach to service-oriented networking. Section 4 investigates
and compares two possible modes of operation: integrated vs disjoint orchestration and routing.
These options and further models for lightweight interaction between service and network layers will
be analysed and evaluated during the course of the project and the results will be presented in the
final deliverable of this workpackage, D2.3.

Figure 7 models the layers of the FUSION system but so far the mapping of roles to business entities
has not been discussed. These aspects are discussed in section 6.
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3.3 FUSION architecture overview

The main functional entities in the FUSION architecture are depicted in Figure 8. The three main
entities are the orchestrator, execution zone and service router.

The orchestrator manages its orchestration domain resources including execution zones and services
which it manages on behalf of application developers (or service providers). The orchestrator is
responsible for service management functions including service registration, server placement
(selecting appropriate execution zones to execute service instances), service lifecycle management
and monitoring. The role and functionality of the orchestrator is elaborated in section 3.7.

The execution zone is the logical representation of a collection of physical computational resources
in a specific location, such as a data centre, which is managed by an orchestrator. The orchestrator
has an abstract view of an execution zone and the detailed internals are managed by a zone
manager. The zone manager is responsible for managing service instances within its zone but under
the instruction of the orchestrator. It will select the specific physical location (VM, machine, rack,
etc.) of individual service instances and interact with the local infrastructure management platform
of the data centre/cloud node for VM lifecycle management. The execution zone interacts with the
communications infrastructure of the outside world through a service gateway. The service gateway
interacts at the level of the service routing and forwarding planes and IP. The execution layer
functionality is elaborated in section 3.6.
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Figure 8: FUSION High Level Functional Architecture

Copyright © FUSION Consortium, December 2013



D2.1 Service-centric networking architecture, security issues and initial interface Page 32 of 127
specifications

The service router is responsible for maintaining and managing service routing information to create
forwarding paths for queries/invocation requests from users and other service instances to be
resolved or forwarded to execution zones containing available running instances of the specified
servicelD.

Service forwarding and service routing functions are shown separately® in Figure 8. The service
router part manages the routing information injected by execution zones on available servicelDs and
runs routing algorithms to populate forwarding entries in the service forwarder. The service
forwarder received queries/invocation requests and forwards them according to the forwarding
tables managed by the service router. The interfaces for routing updates and for forwarding queries
are distinct — see Figure 10 and Figure 12 — but another reason for separating the functions is that we
are considering two different models for implementing routing algorithms within the project. In one
model the service routing functions are centralised within an orchestration domain as shown in
domain 1 on the left hand side of Figure 8 — in this architectural option the centralised routing
algorithms may be co-located with a centralised orchestrator functionality in the business model
case of combined orchestration and service routing domains (see also section 4.1 on integrated
orchestration and routing). The second model distributes the routing functionality, co-locating it with
service forwarding as shown in domain 2 on the right hand side of Figure 8 (see also section 4.2 on
disjoint orchestration and routing). The service networking architecture is elaborated further in
section 3.8).

4 Routing and forwarding are two distinct functions although, informally, they are often grouped together and
the unit is referred collectively as a router. This convention is used throughout this document.
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The FUSION interface will be fully specified in the Deliverable 2.2. Here we briefly outline what the

interfaces will achieve.

3.4.1 Service Publishing and Deployment

The first set of interfaces (included in Figure 9) deal with publishing and service deployment. The
publishing interface is used between the application developer and the orchestrator in order to
initialise a new service and grow/shrink it. The orchestrator then uses the deployment interface to

install/remove service instances.
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Figure 9: Service Deployment and Publishing interfaces

Deliverable D3.1 contains detailed descriptions for these interfaces [D3.1].
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3.4.2 Service Routing Plane

Service routing needs the definition of three interfaces. The execution zone reporting interface
communicates with the service gateway and quantifies the availability of a service instance. This gets
then exposed through the execution announcement interface to the service routing plane. Finally the
inter-domain announcement interface allows this information to get propagated to all the service
routers.
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Figure 10: Service Routing interfaces

These interfaces are detailed in Deliverable D4.1 [D4.1].
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3.4.3 Monitoring

Monitoring, as illustrated in Figure 11, plays an important role in Service oriented networking since
routing decisions need data to inform their decisions. The service monitoring interface allows for
clients and servers to report end-to-end quality of experience. Network monitoring allows network
providers to use network information to inform the service routing. Finally the execution zone
monitoring interface allows the status reporting to the orchestrator in order to inform grow/shrink
decisions for a given service.
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Figure 11: Monitoring interface
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3.4.4 Service Querying/Invocation and Data Forwarding

After routing information has been propagated, service requests need to be routed to the right

service instances. This is illustrated in Figure 12 and consists of two parts: the execution zone query
interface and the inter-domain query interface.
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Figure 12: Query/invocation interface
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The final stage of the FUSION workflow is the data exchange which takes the unchanged Internet and
can be seen in Figure 13.
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Figure 13: Data Forwarding

Deliverable D4.1 describes in more detail these interfaces [D4.1].
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3.5 Service Layer

In this section, we will describe a number of key elements and functions of the service layer of the
FUSION architecture.

3.5.1 Basic service management functions

All FUSION services will have to provide and implement a number of basic functions to be able to run
on top of the FUSION infrastructure. This includes the following functions:

* Lifecycle management

Each service should provide the means for FUSION to properly start and stop a particular service
instance. This could be implemented for example by providing proper scripts or by providing
proper call-back functions.

* State management

When migrating services, the service could assist FUSION by implementing functions that capture
the state of an instance, or that can resume execution based on a particular state. However, it is
assumed that researching mechanisms for storing or restoring the state of a service instance are
outside the scope of FUSION.

* Monitoring

A service can implement particular monitoring functions that allow the FUSION execution layer
to monitor a particular instance, provide a service with particular monitoring information or ask
the service what action to take when things go wrong.

Services can choose to implement one or more of these basic functions. Execution zones may only
accept services that implement at least a particular subset of functions to ensure proper execution
inside that zone. More details on the interfaces will be provided when discussing the core FUSION
service APls, see section 5.2.4.

3.5.2 Specific FUSION service functions

Some services will implement specific functionality that is important for some aspect of FUSION.
Each of these services will have to implement a particular APl or implement particular
communication protocols to provide that functionality. Examples include the orchestration services,
monitoring services, service routing services, the evaluator services or probes that help service
mapping, etc. More details of these APls and communication protocols can be found in section 5.2.

3.5.3 Service communication functions

Services will typically provide one or more communication channels, implementing particular
protocols.

3.5.4 Service Manifest

A service manifest is a static description of a service, including all its dependencies, requirements,
constraints, business aspects (cost, etc.), parameters, etc. It contains all functional and non-
functional requirements to be able to automatically and optimally deploy and create instances of this
service in execution zones in FUSION domains. The service manifest should be described in a format
that is understandable by FUSION to enable fully automatic deployment and instantiation.

The manifest likely consists of several parts, each of which could be provided in separate documents,
and each of which is only relevant (or perhaps even visible) to the relevant parts of FUSION or its
stakeholders. For example, there will be sections about deployment, how many resources to
allocate, how to monitor, etc. Other parts of the manifest should also be made public so that other
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services, potentially from other service providers, can communicate with that service or even
integrate that service into a more complex composite service. For example, sections that describe
the public API of that service, including the communication API, the service functionality, etc. should
be visible to all other services or providers who are authorised to interact with this service type.

The service manifest can only contain the static aspects that are known in advance, and that can
easily be described in a manifest file. In many cases however, this is insufficient or too complex. As a
result, we also rely on the concept of evaluator services, which is a dynamic, executable version of a
service manifest and which can complement (or help interpreting) the static service manifest file.
Deliverable D3.1 [D3.1] contains more details on these evaluator services.

3.5.5 Service Request

When a client (or another service instance) makes a service request, FUSION has to decide to what
service instance it will forward the request. We will first shortly discuss the potential structure of a
service request, followed by two key scenarios for FUSION when routing and handling the request.

3.5.5.1 Structure

A service request will typically consist of a service name and a number of service parameters, some
of which can have an impact on the routing towards an appropriate instance. For example, different
instances of a video transcoding service could be running in the network. The request could specify
the desired resolution, which might impact the routing decision, because higher resolution output
streams will stress the network more. As part of the request, the client may also optionally include
some payload. An example of this payload is an image that is passed to the service instance on which
that instance will for example perform face recognition. When the service instance returns a
response, this response could be a return code in combination with an optional payload or even a
stream of data, as is the case with HTTP requests.

3.5.5.2 Session Slots

We introduce the notion of FUSION session slots as a service independent way of advertising service
instance availability to the service routing plane and to orchestration. Each service instance can
typically handle a particular number of service requests in parallel. When a new service request is
issued by a client (or another service), the service routers need to decide to what service instance to
route that particular request. For this, it needs to take into account many factors, including the
overall load of a particular service instance. For many reasons, including scalability and privacy, it
may not be practical or feasible to expose high-level or low-level resource utilisation data. We
therefore introduce the concept of FUSION session slots.

During service instantiation, a service instance may allocate sufficient resources for handling N
FUSION sessions in parallel. We thus say that the service instance has N available session slots. At
execution time a service instance will identify how many session slots are available for new sessions
depending on the current occupancy of the instance. This information will be collected by the zone
service gateway and announced to the service routers so that future queries/invocation requests
from clients can be routed to execution zones with available resources. The zone service gateway will
aggregate the number of available session slots across all instances of a service running in an
execution zone to be announced to the service routing plane. This can be averaged over time to
avoid instabilities in routing due to highly dynamic changes in session slot announcements.

It should be noted that the service gateway is under the control of the local zone manager and
policies specifying the frequency of route update announcements or how to aggregate session slots
across instances may be specified and managed by the zone manager. As an example of such a
policy: an execution zone may implement automatic service scaling described in section 5.4.3 of
deliverable D3.1 [D3.1]. The orchestrator will have defined a maximum number of service instances
or session slots that an execution zone should provide and it is the zone manager who manages how
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many instances are running at any one time according to observed demand. Provided that the
execution zone can instantiate additional instances quickly enough (as specified in the service
parameters defined by the orchestrator) it may choose to announce more session slots than are
currently available by running service instances. For example an orchestrator may request that an
execution zone provides up to 3 instances, each of which can support N session slots. Even though
only one instance is running the zone manager may set a policy of announcing 3N-(number of
occupied slots) session slots to the service routing plane. In this way the execution zone can make
itself available for serving up its maximum quantity of session slots without predeploying idle service
instances that consume computational resources.

The session slot concept is elaborated in more detail in deliverable D3.1 [D3.1].

3.5.5.3 The Available-Instance Scenario

In this scenario, the FUSION service routers discover at least one available instance that matches the
service and request parameters and that still has available session slots. In that case, the service
routers can very easily forward and route the service request to the corresponding instance in its
corresponding execution zone, which will handle the request and typically send back a response over
the appropriate reply channel. Note that to be able to service the request, the selected instance in its
turn may also perform one or more service requests to other services.

3.5.5.4 The No-Available-Instance (On-Demand) Scenario

In this scenario, the FUSION service routers detect that there is no instance available that matches
the service and request parameters or that still has available session slots. It may also be the case
that there is simply no instance running at all yet. There may also be a grey zone in which there is still
an instance available, but it is not an optimal instance, for example because it is located too far from
the client to deliver the best service. On the other hand, starting a new instance on-demand will
definitely take some time. The question then raises what option to choose.

There are a number of reasons, which in combination of each other make the on-demand scenario
equally important. First of all, a cloud does not come for free. As you typically pay per use, running
an instance all the time will consume a particular number of resources and thus has a price. Second,
the types of services that we want to support are typically rather demanding in terms of compute
and network resources. This means that the amount of resources that has to be reserved per
instance will typically be much higher than a classic web service. Third, in FUSION, we target a
distributed execution model, where there can be many execution zones spread across many FUSION
domains to be able to deliver an excellent QoE towards the clients. This however means that, in
order to avoid the on-demand scenario, each service type would have to be predeployed on all
relevant execution zones. Accurately predicting which execution zones will be relevant at each point
in time for all services is nontrivial, and flooding all execution zones with instances is simply too
expensive if the actual resource utilisation turns out to be much lower. Fourth, it is likely that FUSION
could eventually host a huge amount of smaller and sparsely used interactive applications (cf., the
long-tail), for which predeployment at a specific execution point does not make much sense. An
example can be a 3D game renderer client for a specific game, which needs to be close to the end
user for optimal interactivity, but which is almost impossible predeploy successfully in a cost-
effective manner, unless when it is a very popular game for which statistic multiplexing applies and
load prediction is effective.

The on-demand scenario can be handled in two ways, either in-band or out-of-band. In the in-band
approach, the router forwards the request to the orchestration while requesting to create a new
instance, all in one step. In the out-of-band approach, an appropriate error code is returned to the
client and the client needs to explicitly contact the orchestration layer and forward the request
there, implicitly or explicitly asking to create a new instance along the way.
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There are a number of complications that come along with the on-demand scenario. First, the entire
chain needs to be made aware that there might be cases where there is no instance available, and
implement ways to deal with this case. Second, the on-demand scenario inherently results in an
increased start-up latency when making the request, as FUSION may have to download, install,
configure and start a new service type, which can take a while for non-trivial services. Moreover,
because this process should be fast, this will also impact the overall network and execution points as
the packages will likely be transferred as soon as possible, and the execution point needs to be
installed and prepared as quickly as possible as well, temporarily creating spikes in bandwidth,
compute and I/O resources.

3.5.6 Late Binding

Depending on the service placement, two communicating services may have been deployed on the
same (physical or virtual) machine or another, either inside the same execution zone or across
multiple execution zones. Depending on what option was selected (for whatever reason), the
optimal communication protocol and mechanism may vary. For example, if two communicating
services are co-located on the same machine, they may pass raw data directly in shared memory. On
the other hand, if the same two services are located on different machines, potentially on different
execution zones, then it may be necessary to add one or more transformation functions, for example
to save bandwidth (H.264 encoding) or to increase overall security (SSL encryption) at the expense of
increased compute resources (and additional end-to-end latency).

As a result, FUSION should support a late binding mechanism for services, to enable to use the
optimal communication channel depending on the chosen service placement distribution and
physical mapping. Next to this, FUSION should also allow services to implement their own
communication channels, to be able to support custom and dedicated communication mechanisms.
One example is the efficient sharing of GPU buffer pointers across multiple service instances running
on the same machine to avoid expensive copying and wasting huge amounts of bandwidth. As this is
a very dedicated protocol, it is impossible for FUSION to support this out-of-the-box. However,
FUSION should make it easy for services to detect these scenarios and deploy their own
communication mechanisms via custom libraries in a reliable and secure way.
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3.6 Execution Layer

In a FUSION domain, the FUSION execution layer is responsible for executing and managing the
execution of all service instances that are active in a domain. The FUSION execution layer is managed
by the execution zones, which are completely responsible for the runtime management of all its
service instances.

From a FUSION domain-level, each execution zone is considered to be a black box, allowing for each
execution zone provide its own implementation of the execution layer, optimised for the set of
resources it contains and the set of services it wants to support. Each execution zone only needs to
implement the zone API so that the orchestration layer at the FUSION domain level can interact with
the execution zone.

Concretely, the execution layer consists of a number of execution zones, each of which contain a
zone manager that interfaces with the orchestration layer, the other execution zones as well as the
(domain-level and zone-level) networking layer.

3.6.1 Zone Manager

The zone manager is responsible for interfacing with the domain-level orchestration layer, the
network layer, managing its internal resources (compute, network, storage, etc.) as well as managing
the services that are deployed inside its execution zone. It is also responsible for providing an
execution and management platform for executing and managing FUSION services on these
resources. This includes managing the underlying heterogeneous hardware resources, managing
VMs, containers, etc.

To provide this low-level functionality, a zone manager will typically interface with existing
application and infrastructure management platforms (e.g., OpenStack, CloudStack, PlanetLab,
Globus, etc.). Consequently, the zone manager will typically act as the glue between the FUSION
infrastructure and existing cloud infrastructures on which FUSION services are eventually deployed.

3.6.1.1 Service management

The zone manager is responsible for managing all FUSION services and instances that are deployed
and running inside its execution zone. It will handle requests coming from the orchestration layer
and translate them onto the existing cloud infrastructures, taking into account the service
requirements. It will also provide the appropriate monitoring and management services to ensure
that the instances are running properly.

3.6.1.2 Resource management

We envision that a FUSION execution zone will consist of a heterogeneous set of resources. This
includes different types of compute, network and storage resources as well as dedicated or
specialised accelerators. The zone manager will be responsible for managing and monitoring these
resources, ensuring that FUSION services use them appropriately.

3.6.1.3 Load balancing

Because of the demanding and sensitive nature of many of the FUSION services, properly balancing
these services across the available (network, compute, accelerator and storage) resources will be
extremely important. As a result, a key function of the zone manager will be to dispatch and balance
all its instances appropriately across its available resources. In case the zone manager builds upon an
existing cloud infrastructure platform, a key task of the zone manager will be to make sure that the
cloud infrastructure is configured in such a way that the appropriate QoS can be guaranteed to the
FUSION service instances.
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3.7 Orchestration Architecture

In a FUSION domain, the orchestration layer is responsible for managing the domain-level resources
as well as all services that are registered within the domain. Resource management within a domain
includes key functions as resource registration and resource monitoring; service management
includes key functions as service registration, placement, instantiation, and monitoring.

3.7.1 Service Placement

Service placement or service mapping is the act of finding an optimal location for instantiating a new
instance of a particular service type. Service placement is closely related with resource monitoring
and service deployment, as services should only be mapped onto execution zones or hosts with
enough available and appropriate resources, and is triggered by a service instantiation request.

The input for the service placement operation consists of a number of constraints coming from
multiple locations, including the service manifest, the service request parameters, the resource
availability, cost constraints, time budget for doing the placement, etc. The output of the operation is
the optimal execution zone for creating a new service instance with the appropriate constraints.

3.7.1.1 Service Placement Heuristics

The communication channel between service instances is a good sample for discussing the two
situations of a standard implementation provided by FUSION versus a custom implementation by
FUSION users. Standard Media Data flow may include for example:

* FUSION network data channels using FUSION routing (and possibly optimised internally to
use shared memory when possible).
* Standard shared memory API

Custom Media Data flows are for example:

* Communication via local files.

* GPU object handles

* Cooperating service instances share a single address space for communication and access
shared C++ objects via pointers.

* Services run fundamentally differently (e.g. game server and game clients use a shared scene
graph or physics state)

3.7.2 Static Orchestration

We now describe the steps in which we envisage service orchestration taking place for the initial
static case. The text will be written as if it pertained to a centralised orchestrator intra-domain case;
decentralisation of orchestration functions and inter-domain generalisations will be addressed later.
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The input to the optimiser is a set of atomic service graphs; that is, a graph
. where nodes are atomic services and the links represent data flow between
Service Graph . . . -
Request them. Both nodes and links are labelled with minimum/expected/maximum

demand information and performance constraints. If non-atomic services are
required, these need to be converted into atomic services first.

Using the graph labelling information provided as part of the service graph
Mapping to Service | request, the orchestrator determines the number of atomic service instances
Instances needed to satisfy a given level of service, as well as the network capacity and
QoS requirements between them. We call this the instance graph request.

The orchestrator takes the many instance graph requests that it has received
from all clients, and it maps them to the available computation and network
resources. This yields an service instantiation plan for all service graph
requests. Hence, service embedding in this first approximation statically maps
service requests to the available execution zones taking into account the
limitations imposed both by the execution environments and the network
between them. Of course, if there are not enough resources to fully embed
all instance graph requests, some may be rejected or downgraded in QoS.
This additional complication needs to be better explored.

Service Embedding

Service Instantiation | The orchestrator then takes the service instantiation plan and implements it
on all execution zones. Execution zone functionalities are invoked using the
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specific interfaces of their corresponding providers.

Service Execution | Each zone manager starts as many instances as required by the orchestrator,
configuring also any network-related options between them.

3.7.3 Multi-Domain Static Orchestration

There are two ways in which multi-domain orchestration can progress from here.

3.7.3.1 Disjoint Orchestration

In a very simple case, an orchestrator domain B simply grants permission to another domain A to
issue commands to its cloud drivers, hence allowing A to instantiate services in Execution Zones with
whom it has no direct contact. This implies that A performs its service embedding on its own, simply
labelling some of its instances as external, and invoking the corresponding drivers on the other
domain when implementing its service instantiation plan.

Unfortunately, this simple architecture implies that B has no control over the capacity that A can
consume, which could hurt its own customers. Unless A has some sort of hard reservation on
resources, chances are service requests from A will at some point experience some kind of admission
control/QoS control by B. Since this will be invisible to the orchestrator at B because A is talking
directly with the driver, it will be the responsibility of the driver to give priority to requests from B.
Hence, A will have to have mechanisms to cope with the fact that some of its service embeddings
may fail at the instantiation level, rather than at the embedding level.

3.7.3.2 Joint Orchestration

In this slightly more complex case, an orchestrator domain B simply grants permission to another
domain A to issue partial instance graph requests that connect service instances in B with services
instances in A (or other domains, for that matter). Since these requests from A are then visible to the
orchestrator at B, B can implement any policies needed regarding priority (the cloud drivers are then
not required to implement this functionality).
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3.8 Service Networking Architecture

The FUSION network layer is responsible for interconnecting service component instances according
to well-defined metrics. The network stack provides both control and data plane functionalities. The
functional requirements for the network stack are as follows:

* Naming: the applied scheme must allow to identify services. This name will be used by
application developers, similar to the URLs used in web applications.

* Addressing: the addressing scheme allows to deliver data through the network to the correct
service instance component.

* Routing: determining the path to be followed by data, according to specific policy configured
by the network operator.

* Forwarding: transferring incoming packets from one interface to one or multiple outgoing
interfaces, according to the routing table policies.

3.8.1 Naming and Addressing

Naming schemes are required for specifying the entity. Naming and identification are mostly used as
synonyms. Naming does not necessary mean that the identification should be human-readable.
Several entities may need their own identification scheme:

* Services: service identifiers refer to the service as the abstract entity. Today’s URL scheme is an
example of such a service identifier: connecting to “www.fusion-project.eu”.

* Service instances: multiple instances of the same service might be deployed in the network. For
stateful services, it is important to forward subsequent requests to the same instance and a
service instance identifier is required. Today, no explicit naming scheme is used for instance
identification. Service instances are identified by the tuple (serverlP, serverPort).

* Sessions: service sessions (defined in detail in [D3.1]) are the period of time in which a (set of)
communication channel(s) exists between a client and the service instance that handles the
service request. Session identifiers may be used in service routers if flow-based forwarding
mechanisms are used (e.g. OpenFlow), or at the endpoints for demultiplexing to the correct
service instance. Today, sessions are only identified at the endpoints and transparent to the
network (apart from middleboxes like NAT). If multiple threads are listening on the same port,
demultiplexing is performed on the tuple (clientlP, clientPort, serverlP, serverPort).

The addressing scheme is used to route traffic to the physical location of the entity specified by the
entity. Currently, IPv6 is the predominant addressing scheme that is used. Note that the IP addresses
are overloaded: they have both the meaning of an identifier (possible in conjunction with the port) as
of physical, routable address.

Since the address is tightly coupled to the physical location, a moving entity will need to be
reassigned a new address reflecting the new location. For example, if a service instance (inside a VM)
moves to another subnet, or if a client attaches to another subnet, the IP address will change. This
change of IP addresses might interrupt running sessions. Network-layer mobility solutions adopt two
basic approaches: routing-based and mapping-based [Chan]. Under the routing-based approach, a
mobile node keeps its IP address unchanged regardless of its location changes. Thus, the IP address is
used to both identify the mobile and to deliver packets to it. The routing system keeps track of the
most up-to-date location of the addressed entity and updates the routing tables to deliver packets
with the unchanged IP address to the new location. Under the mapping-based approach, the IP
address of a mobile dynamically changes to reflect the current location of the mobile. An explicit
mapping function in the system is needed to map the stable identifier of the moving entity to its
changing IP address for delivery. Typically this is done by an intermediate proxy (mobility anchor) to
which all traffic is directed. The anchor performs the mapping function to the current IP address of
the mobile node. This approach is used in Mobile IP and Proxy Mobile IP.
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In practice, most of the deployed architectures today have a small number of centralised anchors
managing the traffic of millions of nodes. Currently, there is a trend from the centralised mobile
management deployments to more distributed mobility management, closer to the user at the
network edge [ietf-dmm]. The motivations behind this shift are relevant for FUSION:

* Asshift in user traffic behaviour: there are many direct communications among peers in the same
geographical area.

* Mobile nodes remain attached to the same point of attachment for considerable periods of time.
Mobility management support is not required for applications that launch and complete their
sessions while the mobile node is connected to the same point of attachment. As IP mobility
support is designed for always-on operation, it maintains all context parameters for a mobile
subscriber for as long as they are connected to the network.

When designing identifier-to-address mapping functionality in FUSION, the most important question
is whether we want to support session continuity during migrations of service components (client
and/or service instance in the network). This involves the following questions:

* What is a typical duration for users to stay connected to the same subnet? A more complex
qguestion is whether we support multi-interface solutions.

* s it realistic to assume that service instances will migrate when they have sessions active? Apart
from failure recovery, what would be motivations for a service instance migration? If a service
instance gets overloaded, it is the session that should migrate to a (possibly only very recently
instantiated) instance.

* Many application-layer techniques already exist, that support temporary disconnectivity.
When defining naming/identification schemes, the following dimensions must be taken into account:

* Globally unique: the allocation of names to services and service instances must be globally
unique, or at least the probability of allocating the same name to different entities must be
extremely low.

* Name integrity: avoid routing to spoofed services. Two options are proposed in literature: self-
certifying (embedding the hash of the content in the name), and indirect binding: embed the
public key of the publisher in the name, and sign the hash of the content with the corresponding
secret key (requires 3" party PKI)

* Location-independent: service instances (including the client component) might be migrated.
After migration, their locator will have changed, but not their identifier.

* Granularity: do we only name services (service components), or also service instances?

Structure: The naming scheme may be flat or hierarchical. Flat names may be independent of
organisational changes (e.g. change of ownership) and self-certifying (cryptographic hash). Flat
names are used in NetInf, DONA, PSIRP. Hierarchic naming schemes are used in CCN, where the
names are rooted in a prefix unique to each publisher. Even more advanced naming schemes can be
considered, such as the directed acyclic graph (DAG) in the eXpressive Internet Architecture [XIA].

3.8.2 Resolution and routing

If a client (or service component) requests another service component, FUSION will serve this
request by routing to the appropriate instance. This process of resolution can be done in different
ways:

* Qut-of-band: similar to DNS, where a name resolution service is queried by the client component
before the connection is initiated. The DNS returns the locator of the selected instance. In this
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case, routing in the network is done based on the locators. A middle ground between this
approach and the in-band routing is where the first service router performs the name resolution.

* In-band: name-based routing. The client is unaware of the locator of the remote instance. The
network routes to the most appropriate instance, based on the name.

3.8.3 Service Routing Deployment Options

Below is the list of possible scenarios for deployment of FUSION service forwarding and routing.
Since we assume deployability in the current Internet, we assume that an IP routing is available and
that service routing will be implemented as an application layer overlay.

Note on notation: in the figure, triangles are execution zones, squares are service routers and circles
are IP routers.
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Figure 15: Service Forwarding and Routing

The following deployment scenarios are categorised in three groups. Firstly, options where service
routing and forwarding is largely implemented by the IP layer — section 3.8.3.1. Secondly, scenarios
where service routing and forwarding is achieved by a combination of IP layer and service routing
functionality — section 3.8.3.2. Finally, in section 3.8.3.3, two scenarios where service routing and
forwarding protocols are decoupled from the IP infrastructure. The benefits and challenges of each
scenario are introduced and a table is introduced to compare the scenarios with regards to their
approach to Service Naming, Name Resolution, Service Forwarding, Routing, Signalling, Monitoring
and Service Delivery from both intra- and inter-domain perspectives.

3.8.3.1 Higher Responsibility placed on IP Routing/Forwarding

Advantages/benefits:
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* Based on current Internet protocols:
o clear evolution path

o zero stretch
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* Reduces service-routing problem to a simplified service-name resolution
e Off-line lookups (DNS, or DNS-like) with minimal changes to client applications/API/OS

protocol stack.

Disadvantages/challenges:

* Increased latency - RTT for lookup/resolution per service request [but this happens only at
the start of the session, so only an issue for short-lived sessions].
* Less consistent with vision of native name-based routing in the Internet.

* To get benefits of late-binding (including support for mobility/migration) needs frequent
updates and look-ups or a pub/sub approach.

3.8.3.1.1

Using DNS

This scenario uses the DNS without any changes to the client-server DNS protocol. Normal DNS
qgueries return the IP unicast address of a host running the service. This scenario implies an
incremental change to the existing Internet architecture based on hierarchical naming and we
consider two alternatives: reuse of existing host/domain names or the adoption of new flat or
hierarchical naming schemes for services. In this scenario the client-DNS protocol does not change.
Also no new DNS Resource Records are added for the first alternative, in which case service names
will need to be mapped to follow the dotted hierarchical naming structure of host/domain names.

Intra-domain

Inter-domain

Service Naming

First option: DNS naming (i.e.
dot-separated domains, with
each domain having an
associated authoritative server
and being able to delegate
resolution to more specific
servers). Alternatively, the use
of the existing DNS is just a
client interface/protocol and a
new service naming scheme is
adopted.

First option: DNS naming (i.e.
dot-separated domains, with
each domain having an
associated authoritative server
and being able to delegate
resolution to more specific
servers). Alternatively, the use
of the existing DNS is just a
client interface/protocol and a
new service naming scheme is
adopted.

Name Resolution

Offline

Offline

Service Forwarding

First option: Recursive or
iterative DNS resolution as per
today’s DNS. Alternatively, a
new type of iterative/recursive
lookup is required (e.g. DHT) if
a flat naming space is used and
DNS reuse is limited to the
client-server interface and
protocol.

First option: Recursive or
iterative DNS resolution as per
today’s DNS. Alternatively, a
new type of iterative/recursive
lookup is required (e.g. DHT) if
a flat naming space is used and
DNS reuse is limited to the
client-server interface and
protocol.

Service Control: Routing

First option: Authoritative
name servers load their
registers directly; DNS zone
transfers can implement

Through the root servers, that
associate domain names with
specific commercial entities

Copyright © FUSION Consortium, December 2013




D2.1 Service-centric networking architecture, security issues and initial interface

specifications

Page 50 of 127

routing updates. Alternatively,
unrestricted® if DNS is just a
client interface.

that manage them.

Service Control: Signalling and
Monitoring

Unrestricted.

Unrestricted.

Service Delivery

Directly through the IP
routing/forwarding system

Directly through the IP
routing/forwarding system

3.8.3.1.2 DNS inspired service resolution

This scenario offers offline, dynamic name resolution of service names to IP addresses. In that sense,
it is similar to the DNS scenario, but it proposes significant changes to the ways DNS information is
gueried, maintained and updated: for example a client may subscribe to updates for a particular
servicelD and the DNS server pushes matching resolutions as they are updated. A query for a given
service name returns the IP address of a chosen instance running that service. In a first
approximation, we do not assume any changes to the underlying IP routing substrate, and hence we
assume that a normal IP unicast address is returned.

No constraints or naming are imposed a-priori. Hence, we assume that both hierarchical or flat
naming schemes can be accommodated. This option represents an incremental change to existing
architecture. Only small changes may be required client-side; mainly on the way applications use the

resolution service.

Intra-domain

Inter-domain

Service Naming

First option: DNS naming (i.e.
dot-separated domains, with
each domain having an
associated authoritative server
and being able to delegate
resolution to more specific
servers). Alternatively,
unrestricted if DNS is just a
client interface.

Domain orchestrators can
advertise offered services. If
needed, domain orchestrator
redirects service request to
other domain.

Name Resolution

Offline

Offline

Service Forwarding

Unrestricted; DNS is just a client
interface.

DNS used as a client interface;
pub/sub application-layer
multicast system to
communicate routing updates
between servers

Service Control: Routing

Unrestricted; DNS is just a client
interface.

Since name resolution and
guery response are decoupled,
locality-aware DHT-inspired
routing is well suited to the task

Service Control: Signalling and

Unrestricted

Unrestricted; Uses an
underlying pub/sub application-

5

The term “unrestricted” in these tables means that the scenario does not restrict this aspect of

naming/forwarding/routing to one particular protocol or mode of operation at this level of abstraction.
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Monitoring layer multicast system

Directly through the IP
routing/forwarding system

Directly through the IP

Service Deli ) .
ervice belivery routing/forwarding system

3.8.3.1.3 Extensions to IP

This scenario is implemented with incremental changes to IP, preferably at the edge. Examples
include: LISP, use of anycast addresses, use of unicasted anycast addresses, use of router alert
option, new records to BGP, etc. It may still require DNS (e.g. to convert servicelD to anycast

address). Service routing is done by IP.

Intra-domain

Inter-domain

Service Naming

Unrestricted

Unrestricted

Name Resolution

Unrestricted (possibly offline)

Unrestricted (possibly offline)

Service Forwarding

Unrestricted; can involve hacks

Unrestricted; can involve hacks

Service Control: Routing

Unrestricted; can involve hacks

Unrestricted; can involve hacks

Service Control: Signalling and
Monitoring

Unrestricted

Unrestricted

Service Delivery

Directly through the IP
routing/forwarding system

Directly through the IP
routing/forwarding system

3.8.3.2 Shared Responsibility between IP and Service Routing/Forwarding

Advantages/benefits:

* Late binding (without needing high-frequency updates or additional pub-sub mechanisms).
* Do not need per-packet service routing.
* Application sees this as similar/identical to native-service routing.

Disadvantages/challenges:

* Feedback/monitoring to service routers differs for the 3 cases below.
* The Overlay Routing: Response sent directly to the client scenario (section 3.8.3.2.1) needs
monitoring information to be collected by a central monitoring system before routers are

updated.

* In the Overlay Routing scenario (section 3.8.3.2.2) service routers are updated directly and
can react faster but network wide summaries are more difficult.

3.8.3.2.1

Overlay Routing: Response sent directly to the client

In this scenario the client sends requests (indicating servicelD) to the service router. The service
routing system resolves, routes and delivers request to the appropriate server. Finally the server
sends acknowledgement directly to the client through the network. Data goes through the network
without the intervention of service routers.

In this scenario the client will have to listen for replies that can be received from anywhere in the
Internet. Practical considerations like NAT traversal also make this scenario of difficult deployment.
However the impact on the service routing is minimised.
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Intra-domain Inter-domain

Service Naming Unrestricted Unrestricted

Name Resolution Online Online

Overlay forwarding based on
service names (e.g. DHT)

Overlay forwarding based on

Service F di
ervice Forwarding service names (e.g. DHT)

Service Control: Routing Unrestricted Unrestricted

Directly through the IP
routing/forwarding system

Service Control: Signalling and
Monitoring

Directly through the IP
routing/forwarding system

Directly through the IP
routing/forwarding system

Directly through the IP

Service Deli ) .
ervice belivery routing/forwarding system

3.8.3.2.2 Overlay Routing: Response and control through the overlay

In this scenario, we assume that to invoke a service, the client sends request to its associated service
router including a servicelD. Like the previous scenario, the way in which each client decides which
service router it is associated with is for now left out of consideration. We assume that in this case
the service routing system resolves, routes and delivers the service request to the chosen service
instance. The actual setup of a service association, along with monitoring and signalling operations,
are also propagated using the service overlay. The data path, however, is only routed through the IP
substrate, thus reducing service forwarding load. Essentially the control plane is in the overlay and
data plane is plain IP.

Like in Serval [NDGK12], the service instance will acknowledge the client request through the service
overlay. Progress/status reports can also be sent through the overlay. Data, however, will come
through the IP network. Note, however, that the control connection state is kept in the entire routing
overlay while the data transmission takes place. That means that the routing substrate will keep

state for every active connection it helps to establish.

Intra-domain

Inter-domain

Service Naming

Although Instance names exist,
only generic service names are
injected into the routing plane.

Although Instance names exist,
only generic service names are
injected into the routing plane.

Name Resolution

Online

Online

Service Forwarding

Overlay forwarding based on
service names

Overlay forwarding based on
service names

Service Control: Routing

Unrestricted (e.g. Distance-
Vector-Based compact routing)

Unrestricted (e.g. Distance-
Vector-Based compact routing)

Service Control: Signalling and
Monitoring

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system

Service Delivery

Directly through the IP
routing/forwarding system

Directly through the IP
routing/forwarding system
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One crucial aspect of this scenario is that each service will only be advertised once from each
execution zone; hence, anycast operation is assumed natively. Moreover, this also means that when
customer requests for a given service names are processed, they will be forwarded on the basis of
service names and terminate on a given execution zone rather than with a particular instance. For
stateless services, the assignment to instances can be performed probabilistically on the basis of load
balancing considerations. For stateful services, however, a persistent association must be kept at the
service layer between each session terminating at an execution zone and an specific service instance
(this applies for conventional services in which state is not shared between instances. If one has an
inherently scalable architecture like e.g. memcached/varnish with shared memory then the system
can treat this as essentially a single instance).

An entity is hence required that operates similarly to a network-based HTTP load balancer. This
entity will maintain a table that can associate each client with a running instance on the basis of the
destination service ID and client information (e.g. the source IP Address and Port) . Since each packet
at the service level will require multiple packets at the IP layer, service routers will require
segmentation and reassembly and hence, per-service-packet state (at least for a limited amount of
time). We will call this entity the zone service gateway. Of course, this gateway does not need to
identify the associated service instance on the basis of an IP address, even though that example is
the most direct one. Alternatively, this identification could be based on layer 2 labels or even other
service-based names. This gateway can also provide other services that can aid with mobility and
migration. In particular, it can operate like the VLR/HLR pairs that have traditionally used for
roaming; alternatively, it may provide services akin to LISP.

3.8.3.2.3 SDN inspired

This scenario is inspired by recent developments in software defined networks. Client sends request
(servicelD) to Service routers. The forwarding entries in service routers are configured by a
centralised routing system — potentially co-located with the service orchestrator — see section 4.1 for
a more comprehensive description of an integrated orchestration and routing system. Service
routers deliver requests to the appropriate instance. Server sends acknowledgement directly to
client through either the service routing/forwarding system or the IP routing/forwarding system.
Data goes through the network without the intervention of service routers.

Intra-domain Inter-domain
Service Naming Unrestricted Unrestricted
Name Resolution Online Online

Overlay forwarding based on

i Unrestricted
service names (e.g. DHT.) nrestricte

Service Forwarding

Service Control: Routing Centralised algorithm Unrestricted

Directly through the IP
routing/forwarding system toa | Unrestricted
centralised control point

Service Control: Signalling and
Monitoring

Directly through the IP

. . Unrestricted
routing/forwarding system

Service Delivery

3.8.3.3 Higher Responsibility placed on Service Routing/Forwarding

Advantages/benefits:
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* More consistent with vision of native name-based routing in the Internet.

* Extremely late binding.

* Solving server and client mobility/migration.

* Dynamic mid-session load balancing.
* Service routers could perform other service-layer middle-box functions.
* Migration to clean-slate is more straightforward - no-need to piggy-back on IP routing layer.

Disadvantages/challenges:

* Inefficiency.

* Service layer routers process every packet at wire-speed (FIBs are larger hence more complex

operations per packet).
* Increased stretch.

* Full deployment in the Post-IP scenario (section 3.8.3.3.2) with all routers in the Internet
being upgraded/replaced is hard to imagine.

3.8.3.3.1

Overlay Routing: Data comes through overlay

Client sends request to Service router. Service routing system delivers request to server. Server sends
acknowledgement through the overlay. Data also comes through the overlay.

Intra-domain

Inter-domain

Service Naming

Unrestricted

Unrestricted

Name Resolution

Online

Online

Service Forwarding

Overlay forwarding based on
service names (e.g. DHT.)

Overlay forwarding based on
service names (e.g. DHT.)

Service Control: Routing

Unrestricted

Unrestricted

Service Control: Signalling and
Monitoring

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system.

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system.

Service Delivery

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system.

Through the service
routing/forwarding system
operating as an overlay over
the IP routing/forwarding
system.

3.8.3.3.2 Post-IP

Clean slate addressing “CCN-like” service oriented layer 3. Queries forwarded by service routers.
Layers 3 and above replaced in end hosts. Layer 3 in all routers also changes. This is CCN inspired but
with service specific differences. Could be hierarchical or flat naming (although flat naming causes
scalability problems since every router might have to be aware of every instance of every service).

Intra-domain

Inter-domain

Service Naming

Unrestricted

Unrestricted

Name Resolution

Online

Online
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Service Forwarding

Direct forwarding based on
service names (e.g. CCN)

Unrestricted

Service Control: Routing

Unrestricted

Unrestricted

Service Control: Signalling and
Monitoring

Through the native service
routing/forwarding system. This
option does not require an IP
routing/forwarding system.

Through the native service
routing/forwarding system. This
option does not require an IP
routing/forwarding system.

Service Delivery

Through the native service
routing/forwarding system. This
option does not require an IP
routing/forwarding system.

Through the native service
routing/forwarding system. This
option does not require an IP
routing/forwarding system.

3.8.3.4 Discussion on Service Routing Deployment Options

The post-IP option, section 3.8.3.3.2, is considered unrealistic for deployment in the short to medium
term due to it being highly disruptive at a high cost to ISPs. The option of using DNS as currently
deployed, section 3.8.3.1.1, has the disadvantage of not easily fitting the requirement for resolving
servicelDs without compromising the service naming scheme to fit existing DNS resource records.
Even if new resource records are defined for FUSION-compatible servicelDs and the client-DNS server
protocol could remain intact, new functionality for resolving and forwarding queries is required for
DNS servers to act as service routers and the benefits of retaining the existing DNS protocol are
limited. Overlay Routing: Response sent directly to the client, section 3.8.3.2.1, has an asymmetry of
communications with the client receiving invocation acknowledgements from an IP address it has not
directly solicited which causes potential problems with NAT traversal which would require inelegant
solutions. Overlay Routing, Monitoring and Signalling, section 3.8.3.2.2, has advantages of allowing
the overlay to be aware of status reporting but has the disadvantage of requiring state to be
maintained in the overlay for all service sessions.

For the above reasons our initial analysis of the networking options has resulted in the decision to
keep features from the following scenario options:

* DNS-inspired service resolution, section 3.8.3.1.2, for use in two cases:

* Firstly, where the FUSION service routing plane resolves servicelD to a specific execution
zone/service instance and returns one or more IP addresses to the client for subsequent
selection and invocation.

* Secondly, where the FUSION service routing plane forwards a client’s invocation request to a
selected execution zone and the service instance is invoked directly, with the service
response being routed back via the service routing overlay. However, we do not foresee this
option being used for either long-lived sessions or request-response sessions where the
qguantity of returned data is excessively large. This is due to the inefficiencies and
performance degradations of routing such quantities of data through an overlay or for
maintaining session state throughout the overlay for a lengthy amount of time. In such cases
the query resolution mode of operation is preferred with subsequent data-plane exchange
being undertaken directly through IP.

* SDN-inspired, section 3.8.3.2.3, for the case when there are no running service instances and the
service routing plane should invoke orchestration (or a zone manager) to deploy an instance on
demand.
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* An exploratory native layer solution based on the Extension to IP, section 3.8.3.1.3, using the
control plane of IPv6 anycast to implement a subset of the FUSION service networking
requirements with a minimal modification to today’s Internet fabric. This can also be used as a
comparison of cost/benefit with the main overlay-based solutions.

The outcome of a more detailed investigation of the options for the FUSION service networking
protocols is discussed in D4.1 [D4.1].
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3.9 Software Architecture

Different aspects of FUSION (e.g. FUSION orchestration versus communication/routing) will be
implemented as independent software modules:

1. The software interfaces are independent (except for using small optional utility libraries).
2. The implementation of one module may use another module, but may only use public
interfaces (“Eat your own dog food”) of other modules.

Of course the interfaces of different modules can and should be designed to work together
smoothly, but without specifically designing an interface to work primarily with a particular other
module.

The following diagrams give an overview for example about decoupling the orchestration from
communication and routing at the level of execution points.

Execution Point

FUSION Execution Point
Orchestration Manager

Execution Point

FUSION Execution Point
Orchestration Manager

FUSION Zone
Orchestration
Manager

FUSION
Orchestration
Instance

Service
Instance

FUSION
Router
Instance

FUSION
Orchestration
Instance

Service
Instance

FUSION
Router
Instance

FUSION
Orchestration
Instance

FUSION
Orchestration
Instance

Service
Instance

tandari
Media Network
Data Floy Commu-
nication

FUSION Zone
Router

FUSION Execution Point
Router Manager outer Manage

Manager

Figure 16: FUSION Software Module Architecture
The core aspects are:

* While service are managed by the orchestration part of FUSION, services should have free
choice of using completely proprietary communication (e.g. passing GPU object handles for
most efficient communication if the involved service instances run on the same machine,
labelled "custom media dataflow" in the diagram), or using a communication and routing
module of FUSION (labelled "standard media dataflow" in the diagram).

* The communication and routing module of FUSION communicate with the orchestration part
of FUSION only via public interfaces which are available to any user of FUSION. For example,
the proprietary communication implementation can use the same interfaces as the FUSION
standard communication implementation. The FUSION standard communication
implementation does not have any “unfair advantage” by using any internal interface of the
FUSION orchestration layer, which in turn would mean disadvantage for any proprietary
communication channel which does not have that advantage.
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* As consequence this means that a strict decoupling forces the development of FUSION itself
to be open for future users of FUSION which want or have to implement proprietary
functionality on top of FUSION.

The corresponding overall view of such a decoupled architecture in case of orchestration versus
communication may look like the following:
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Figure 17: Routing and Orchestration Software Module Architecture

Implementing FUSION in decoupled components means from the software architecture perspective
that there should be no functionality in a core module which is required to be used by multiple other
modules as visualised by the following diagram:

—0

Non-sustainable Sustainable

Figure 18: Coupled vs. Decoupled Software Architectures

The decoupled approach is more industry-friendly and future-proofed, since FUSION is supposed to
be not a closed package, but a foundation for many commercial users having different demands and
requiring proprietary custom extensions. User of FUSION can best selectively replace functionality
(e.g. direct communication channel or own routing) with lowest probability of hitting walls (because
the implementer had to design the public APIs powerful enough for all own purposes). The
decoupled approach also benefits from all standard advantages of modular software development.
The disadvantage of a strict decoupled approach is that it causes more work for developing FUSION
by enforcing very cleanly decoupled interfaces®.

® For example, FUSION partner Spinor used a modular, plugin-based software architecture in v4 of their
Shark 3D software, resulting into a growing number of difficulties for customers who wanted to implement
certain custom features which Spinor couldn't anticipate. Also the software development process suffered
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4. INTEGRATED AND DISJOINT ORCHESTRATION AND ROUTING: A
COMPARATIVE ANALYSIS

4.1 Integrated Orchestration and Routing (IOR)

In this section we explore the approach where the FUSION orchestration both manages the service
deployment (service instance placement) and the population of the routing tables of each service
router in a domain. We study related work on service routing and describe the FUSION architecture
and operation flow in detail. We will show that this FUSION approach is able to solve the problems
discovered in related work. As a discussion point, we also take a look at an alternative approach
where the population of the service forwarding tables is managed by service routers, rather than by
the orchestration.

Consider a user requesting a service hosted in a FUSION domain through its service identifier. One of
the key challenges in FUSION is to forward this request to the best service instance while maintaining
the desired QoS. Related research brings forward two approaches: in-band forwarding of identifiers,
or out-of-band name resolving.

The first approach is used in CCNx [JSTP09] amongst others. In-band routing allows users to express
requests for content (called interests) by name, rather than by locator, straight onto the network,
while the service routers are responsible for selecting the most suitable service instance. This in-band
forwarding is done by mapping the service name to the next hop address on the path. In CCNx, the
routing tables are gradually constructed by adding forwarding entries for a given prefix. If no entry is
found in the routing table for a particular content identifier, the request is dropped. Replies for
pending interests are cached in the router, so subsequent requests can be served by the router itself.
In the current CCNx implementation these forwarding entries must be added manually through
configuration files. As a result, there is no real routing mechanism in CCNx: either the request is
served by the router, either the request is dropped.

The current CCNx approach for routing table construction cannot be applied to FUSION. There is no
intelligent mapping mechanism: content requests are simply flooded on all interfaces. In FUSION, we
seek an intelligent resolution of service names to the best instance, based on context parameters
such as client profile, device characteristics, network statistics, etc.

The second approach, out-of-band name resolving or also called publish-subscribe, is used in PSIRP
[JZEAQ9]. This approach resembles that of DNS: requests are first sent to a broker who selects the
most appropriate destination based on multi-dimensional metrics. This approach introduces an
additional delay during the lookup phase, resulting in higher latency for each service request.

In the next section we will sketch the architecture of FUSION, after which we describe how FUSION
solves the above mentioned problems.

4.1.1 Intra-Domain Architecture

Consider a FUSION overlay network consisting of execution zones, services routers and a FUSION
orchestration. To make our suggested approach scalable we introduce a FUSION domain, which is
the collection of execution zones and service routers managed by one FUSION orchestration. In each
FUSION domain the assigned orchestration monitors traffic on the overlay network, deploys service
instances in execution zones, and updates the forwarding tables of service routers.

from more and more difficulties adding certain larger new features. With v5 (2005) Spinor switched to the
modular-decoupled philosophy, which stands the test for eight years now without suffering from
limited/legacy architectures without customers or Spinor itself hitting architectural limits.
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The orchestration is a logically centralised component: it monitors execution zones in its domain and
forwards instructions to zone managers and service routers. The orchestration can be implemented
as a centralised entity, e.g. a zone with enough computing resources to manage its domain, or in a
distributed manner as a set of cooperating zones and service routers. If the orchestration is
implemented in a distributed manner, each zone or service router operating as part of the
orchestration listens to the same multicast but only forwards instructions to nearby zones or service
routers that it manages. In the remainder of this section we will refer to the orchestration as a logical
centralised entity, as shown in Figure 19.
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Figure 19: IOR Intra-Domain Architecture

We defined an execution zone as the smallest entity where the orchestration can deploy service
instances. On the overlay network, requests for a service instance hosted in a certain destination
zone are forwarded along the path to the service router in that zone. Once a request reaches the
destination zone, it is further processed by the zone management protocol. This abstraction allows
zone owners, such as an ISP or data centre owner, to run their current management software inside
the zone while still participating in the FUSION overlay network. This will ease the transition to
FUSION and reduce the integration cost.

FUSION specifies an API for exchanging control traffic between the execution zone and orchestration.
The orchestration uses this APl to communicate with a zone and forward instructions on. The
component implementing the API in the execution zone is called a zone manager. A zone manager
monitors its internal resources and builds a global zone representation, representing the available
resources and current zone state in a manner understandable to the orchestration. As the
orchestration does not have direct control of the zone infrastructure, it delegates instructions to a
zone manager, which in turn will handle the local execution in that zone. The orchestration uses
overlay monitoring information to find the best zone to deploy a new service on, but the zone
manager chooses the physical resource to start the process on. As the orchestration does not know
the address of that internal zone resource, it must also delegate forwarding table updates to the
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zone manager. Thus, the zone manager is also responsible for populating the intra-zone service
routing, as instructed by orchestration.

4.1.2 Example Routing/Orchestration Flow

The orchestration relies on monitoring information to make decisions concerning service placement
and routing optimisation. Figure 20 illustrates this process: first an internal zone monitor protocol is
used to gather information about local resources (1). This could be a simple log of the local resources
available in a zone, but it can also be a larger scale monitor framework. The zone manager calculates
a score representing the available resources of that zone (e.g. the amount of active connections per
service instance in that zone) and forwards this to the orchestration. Transfer (2) represents the
monitoring information on available zone resources to orchestration. After monitor information is
gathered, the orchestration processes the information (3) and uses this as input for analysis and
decision algorithms (4). These decisions are classified as either deployment or service routing
instructions and delegated to the appropriate component (5). Service routing instructions are only
sent when forwarding entries need to change (e.g. add, edit or delete); this approach saves
bandwidth usage.
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Figure 20: IOR Monitoring Flow

The zone availability together with known link characteristics is sufficient for the orchestration to
find the path to the optimal service instance for each service router. This method guarantees that
each user request will be forwarded by service routers along the path to that optimal service
instance. FUSION excels from existing routing protocols by considering both network and host
characteristics, which is needed to reach the desired QoS from services.

When a zone’s workload reaches critical values or no service instance is located nearby users
requesting it, the orchestration will make optimisations in the overlay network. In the first case, new
incoming requests can be forwarded to an alternative service instance located in another zone to
perform network load-balancing. In the second scenario, an additional instance could be deployed
near the user to reduce latency to a minimum. In both cases, the orchestration will send the new
forwarding entries to all service routers affected by this. In case of a zone, the orchestration will
instruct the zone manager to update the zone’s service router. Instructions can be forwarded using
the overlay network or via a pre-established path, as illustrated in (1) of Figure 21.
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Figure 21: Forwarding Service Routing Results

In the previous sections we have not explained in detail how a zone manager executes service
deployment requests from the orchestration. Once the orchestration forwarded a service instance
execution instruction (1) to a zone manager and received confirmation about the execution, it will
assume that all user requests arriving in the zone will be answered correctly. The zone manager has a
service life cycle management (SLCM) component which handles these instructions (2). The SLCM can
deploy several instances and use an internal load-balancer to utilise all instances for incoming
requests (3). These inter-zone decisions are hidden from the domain level FUSION components, due
to the abstraction of an execution zone. It is also possible that a zone chooses to use an IP-based
protocol to address its execution points, which may in turn be physical or virtual resources. This is
possible on condition that the incoming FUSION requests are accepted and that outgoing answers
are converted back to a FUSION packet before leaving the zone. The next hop field in a service
router’s forwarding table contains the address of the next service router on the path. The final hop in
the overlay network will always be a service router located in a zone hosting the requested service
instance. Therefore, a zone must implement an internal request converter to convert name-based
requests to IP-based ones. This is necessary for the request to reach the execution point running that
service. As shown in Figure 22, the zone manager updates its service router’s forwarding table after
deploying an instance, as this address is not known to the orchestration. Only when the request
reaches the destination zone it will become known which physical resource it must be processed on.
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Figure 22: Orchestration-driven Service Deployment

4.1.3 Benefits of Integrated Orchestration and Routing

Delegating both service deployment and service routing to the orchestration enables FUSION to not
only optimise service deployment on-the-fly, but also manage overlay forwarding in an efficient
matter. The FUSION orchestration is able to use correlation between the service and network layer
to optimise deployment decisions, as most routing updates origin from service deployment and
migration.

FUSION should minimise the overhead generated by exchanging (service-instance) topology
information. In IP-based protocols such as OSPF, routing table updates only occur when a link or
neighbour goes down or joins the network. In FUSION, deployment decisions are based on more
extensive information such as the amount of active clients a service instance has, or delay measured
between two execution zones. These characteristics change at much higher rates, drastically
increasing the amount of exchanged monitoring information. The suggested FUSION approach
reduces flooding in a matter similar to OSPF Designated Routers and iBGP Route Reflectors; all
routers and execution zones multicast monitoring information destined for the FUSION
orchestration. The orchestration in turn relays instructions to service routers and zone managers
using either the overlay network or pre-established links reserved for control traffic.

Routing algorithms and service deployment algorithms located on the orchestration both utilise this
monitoring information as input. The orchestration is also able to utilise its centralised role to take
more sophisticated decisions; e.g. prediction algorithms can be used to preemptively deploy service
instances but withhold service routing updates until these instances are needed. This would be a
much more complex problem when all routers and execution zones must agree on such decisions
beforehand.

As mentioned in the previous section, out-of-band name resolving introduces increased latency.
FUSION avoids this problem by decoupling control traffic and data traffic. Overlay monitoring
information is used by the orchestration to optimise service placement and update service routers’
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forwarding tables. User service requests follow active forwarding entries on a service router, which
guarantees all requests will follow the path leading to the best service instance for that request.

4.2 Disjoint Orchestration and Routing (DOR)

4.2.1 General Architecture

This section gives an overview of how a FUSION system with separate orchestration and routing
layers. The following figures show the interactions between functional blocks for service
deployment, service routing as well as for performance monitoring. Sections 4.2.2 and 4.2.3 highlight
the pros and cons of disjoint orchestration and routing compared to the integrated case discussed in
the previous section.
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Figure 23: Service Deployment
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Figure 23 shows the orchestration of service deployment. Service instances are installed in the
execution zones — the figure depicts two different services — yellow and purple — being deployed in
separate execution zones. Each is identified by a different servicelD. The service deployment phase is
similar in the disjoint and integrated orchestration and routing cases.

Figure 24 shows how the service routers are populated with information about the running service
instances. Execution zones announce servicelD availability (and number of available session slots) to
their local service router. Service routers exchange routing information with one another in a
distributed fashion (via either a distance-vector or link-state equivalent routing protocol) and
populate their local forwarding entries with servicelDs. The nature of the anycast routing algorithm
and the way selection will be made between multiple instances of the same servicelD in different
execution zones is not dealt with here — this is future work to be documented in year 2 of the
project. Updates are announced and propagated when servicelDs are introduced, taken out of
service or when the number of available session slots changes (with appropriate mechanisms in place
to avoid highly dynamic updates, such as announcing longer-term averages of available session slots
for a servicelD within an execution zone).
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Figure 24: Routing Announcements

Figure 24 shows the main difference of disjoint orchestration and routing compared to integrated
orchestration and routing: in the disjoint case the service routers run a distributed routing algorithm
and configure their own local forwarding tables, whereas in the integrated case the routing function
is centralised and co-located with the orchestrator with the forwarding entries in the service routers

being configured remotely (cf. Figure 21).
Although these figures do not show multiple service routing domains routing updates would also be

exchanged between domains in a similar manner to the updates shown in Figure 24. However, as is
the case with BGP routing policies today, not all routing information on all servicelDs would be

exchanged with peers.
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Figure 25: Service Invocation Routing

Once the routing protocol has exchanged routing updates and forwarding tables have been
configures users may issue query/invocation requests to their local service router, see Figure 25. In
the figure the user has requested the purple servicelD and the query/invocation request is forwarded
to the relevant execution zone through one or more service router hops.
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Figure 26: Service Response Routing (via overlay)

Figure 26 shows the service response being routed back to the client via the overlay. This
corresponds to the service networking option described in section 3.8.3.3.1 (Overlay Routing: Data
comes through overlay), and as described in the discussion in section 3.8.3.4 this is only considered
feasible for short-lived sessions with small data requirements. Longer lived sessions or those with
heavy amounts of data to return will communicate directly through IP as depicted in Figure 27.
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Figure 27: Service Response Routing (through IP)

The DNS inspired service resolution option, discussed in section 3.8.3.1.2, is not shown in the above
figures. However it would work in a similar way to Figure 26 with one of the service routers along the
path (not necessarily the first one) resolving the servicelD and returning the IP address back to the
user through the overlay. The subsequent data plane communications would be routed as shown in

Figure 27, initiated by the user.
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4.2.2 Benefits of Disjoint Orchestration and Routing

In the integrated view, orchestration is a generic resource allocation platform that has control over
both endpoint and network resources. Hence, it can effectively optimise over both. If there are
conflicting requirements between say the network and the execution zones, it can solve this trade-
off directly as a multi-objective optimisation problem. However it should be noted that this multi-
objective optimisation could be complex, even within a single domain. At Internet scale it may
require constraints to be relaxed so much for a feasible heuristic-based solution that solutions may
be very sub-optimal.

* Inter-domain operation with disjoint orchestration and routing is more realistic as it avoids the
need for a central global routing manager. This is important not only due to scalability issues, but
because individual business entities need the freedom to implement policies independently.

e If inter-domain is achieved in the integrated case by interworking between local
orchestrators/routing managers in each domain then we have moved to a distributed routing
system anyway, at least for the inter-domain aspect of routing.

* Inthe separate view, orchestration and routing are doing two completely different things:

* Orchestration is deploying services, optimising placement to match forecasted demand given
execution zone location/availability.

* Routing is discovering the best service instance out of those currently running and
forwarding forwards requests to the next hop according to the tables created by routing.

* Orchestration and service routing may be run by different stakeholders with different interests
that are not aligned.

* Dynamic network changes can be accommodated only by routing; this simplifies orchestration
and makes churn much less of a problem.

* In the centralised case, the optimisation problem is exceedingly hard. This may necessitate
approximations that will generate an optimality gap. It may very well be the case that this gap is
comparable to that of the decentralised approaches, obviating the benefits of centralisation.

4.2.3 Drawbacks of Disjoint Orchestration and Routing

When considering the advantages of a separate architecture, it is useful to consider the following
issues:

*  Flooding routing information is wasteful.
* Orchestration decisions usually result in accompanying routing changes.

* Monitoring information is collected by the orchestrator anyway, so the need to flood similar
information between service routers in separate routing updates is questionable.

4.3 Conclusion on Integrated vs Disjoint Orchestration and Routing

In the integrated case there is more control over routing decisions allowing them to be optimised
more readily for specific service deployment patterns and adapted dynamically according to complex
rules and algorithms which would be difficult to control in a distributed routing system. These
advantages hold provided that the orchestration domain and service routing domain are integrated
business entities (see also section 6 on business model considerations for FUSION). In alternative
business models where routing domains and orchestration domains are not controlled by the same
entity then a close cooperation of business entities for configuring routing/forwarding tables is less
likely. This becomes more of as issue as the scope of service access is scaled to global coverage. So
while integrated orchestration and routing is feasible and potentially more efficient at optimising
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operations this has some bounds in terms of geographical coverage and, beyond a certain size,
interworking between domains becomes inevitable. For this reason both options will be explored by
the project to investigate the opportunities for optimal configuration of single domains (e.g. the ISP-
centric model discussed in section 6 (Figure 34) as well as to study techniques for scalable service
routing between domains in alternative business models, such as the OTT business model with a
common service routing plane (Figure 36).

Copyright © FUSION Consortium, December 2013



D2.1 Service-centric networking architecture, security issues and initial interface Page 69 of 127
specifications

5. APPLICATION PROGRAMMING INTERFACES

In this section, we will present the key FUSION API functions at all levels of the FUSION system. As
many of these API functions are part of overall FUSION core functions that span multiple layers, we
start this section by describing these functions and highlight the role of each entity involved in some
part of this function. Afterwards, we zoom in on the corresponding key APIs per layer or entity. We
will not focus here on the local and/or implementation dependent APIs.

5.1 Key FUSION Functions

In this section, we will repeat the key FUSION functions and entities or stakeholders involved in many
of these functions, present their high-level roles in a matrix form, followed by a more detailed graph-
based representation of each of these functions, identifying the key interactions that result in the
FUSION APIs that are described in the later sections.

5.1.1 Overview
As a reminder, we first present a non-exhaustive list of the key FUSION functions:

* Service registration

* Resource registration

* Service state management (includes instantiation, deployment, etc.)
* Service monitoring

* Resource monitoring

* Service mapping

* Service request

* Communication

* Routing

Below a list of the key FUSION entities and stakeholders that are involved in many of these core
functions:

* Domain orchestration
* Execution zone

* Execution point

* Service router

* Service instance

* C(Client

Each entity can have a number of roles in each of the core FUSION functions. For example, the
service routers are not only used to forward many of the messages corresponding to specific API calls
between two entities, it also is involved in other functions, including network resource monitoring,
etc.

Table 3 shows at a very high-level the potential role(s) of all entities with respect to the specific
function.
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domain exec. zone exec. point network instance client
service register itself ) ) register SR ) register
registration handle/manage forward/route new service type
resource register zone . register .
registration handle/manage handle/manage register forward/route register
service state |supervise/trigger ) .
mgmt. (prelaunch/LB) handle/manage provide forward/route (re)act trigger
service probe probe
monitoring aggregate aggregate - forward/route (FPS, latency) (roundirip lat.)
resource probe probe
. aggregate aggregate (quotas,usage) aggreg./update - -
monitoring q ,usag forward/route
service ) handle estimate
. Supervise . - forward/route -
mapping (provide score) (calculate score)
handle handle forward/route
service request| (on-demand (on-demand - balance accept/act/reply trigger
scenario) scenario)
comm. handle/manage support forward/route
| - o manage/control | handle/manage use use
protoco (late binding) (e.g.: limit bw) (late binding)
routing Supervise supervise - ha.ndle/manage - -
implement

Table 3: FUSION Architectural Functions

Further aspects of investigation concerning these functions and corresponding API calls include the
definition of the communication models: push, pull, publish/subscribe, etc. These will be refined as

the APIs are designed and implemented in the second year of the project.

In the next sections, we will now elaborate on each FUSION function, presenting the interaction

graph.

5.1.2 Resource and Service Monitoring

In Figure 28, we present the monitoring interaction graph, depicting all entities, their relation with

respect to each other and the communication flows between them.
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Figure 28: Monitoring Interaction Graph
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In the above figure, each arrow represents a potential APl call. However, some of these are
important with respect to the overall FUSION architecture, whereas others are more
implementation-dependent. For example, how execution zones will pass their information to the
domain is a key API function, whereas the way the physical host probes pass their information to the
zone manager is up to the zone implementation (if it even contains a physical host probe). The
former type need to be formalised and worked out in detail, whereas the latter ones can just be
exemplified, for example in the context of a prototype specification and implementation.

5.1.3 Service Requests

For this function, we will distinguish between the available-instance and the on-demand scenario.
The former scenario is depicted in Figure 29 below.

service router
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. forward
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Figure 29: Available-Instance Scenario

The on-demand scenario is depicted in Figure 30. Although this scenario looks very similar with the
previous one, the service mapping function itself involves many different functions, including the
service registrar, the evaluator functions in the selected execution zones, service deployment, and
instantiation, and setting up the monitoring for the new instance. Each of these are discussed on
their own in their corresponding sections
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Figure 30: On-Demand Scenario

5.1.4 Service Placement

Service mapping is the act of finding the optimal location to create a new instance for a particular
service type, taking into account the various instantiation parameters. In a first step, the
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orchestration service needs to fetch the service manifest from the registrar service. Based on some
high-level information, the domain-level mapper service will make a preselection of one or more
execution zones, and will request each zone to assess the request for creating a new instance in that
execution zone. It will likely use an intra-zone mapper that takes into account the local resource
usage information coming from the intra-zone monitor, and the score from the supplier service. One
or more offers is sent back from each execution zone and based on this, the domain-level mapper
service selects the best offer.

execution Zone

orchestration

Zone manager

registrar
- mapper

orchestration i Zone manager

mapper -

monitor

— request supplier service

= =» response

- evaluate

Figure 31: Service placement diagram

5.2 Services API

The following API analysis is not supposed to define the API at this early stage, but to describe what
the software developers who are implementing services may expect from FUSION. These
expectations are expressed partly as pseudo-code of a possible FUSION API plus sample-pseudo-code
how an implementation of a service may look like.

5.2.1 API language
Proposed APl language is C for the following reasons:

* Performance.
* A more comfortable C++ wrapper can be created easily.
* Bindings for other languages can be added easily (e.g. using SWIG).

Technically the APl will likely contain various OO features, which can be expressed also in C by using
well-known standard techniques (e.g. emulating classes via function pointers and baton parameters).

However, the following APl spec use pseudo-code for more clarity. The pseudo-code does not show
any error reporting, which of course is included in any real API.
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Figure 32: FUSION API Modules

5.2.2 FusionUser

Software using FUSION services needs an interface for requesting services and communicating with
them. Expressed as pseudo-code, a very simple API for accessing services may look like the following,
written in pseudo-code. The APl may also include functions used by evaluators, which in this simple
sample are contained in the same API:

// Implemented by FUSION:

// Send a request to a stateless service and return the answer.
byte[] fusionUserRequest (

string service,

byte[] params);

// Reference to a service instance:

class FusionUserServInst

{
// Release the reference to the service instance.
void release();

// Location of the service instance, containing all information

// required to connect to that service either using FUSION sockets
// or to connect directly (e.g. via own TCP).

// This information may be passed to other processes

// on other computers.

IpPort getIpPort();

}

// Request a new instance of a stateful service
// according to the requirements passed in the description parameter.
// The description is a black box for FUSION and is passed
// to the service evaluators corresponding to the requested service,
// see the FusionEvaluator API below.
ServInst fusionUserInstantiate (

string service,

byte[] description);

If an application or a service asks for a service, then the description is custom data ignored by
FUSION, and may contain service-specific parameters which are relevant for determining the optimal
service instance location, for example

* Location of other running service instances (e.g. VoD servers).
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* Location of all players in case of a multi-user server (e.g. a game server).
* Other services required but not instantiated yet.
* Location of running service instances required (e.g. database).
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The point is that this data may be highly service dependent, but also environment dependent (e.g.
locations of one or more users).

The method getlpPort can be used to establish a data connection, both by the software which
requested the service, but also by other software. For example:

* The software which requested the service can establish a direct network connection via TCP

¢ Ifitis running on the same execution point, it can use the process ID to connect for example
via shared memory.

* The software can pass the location to other software (e.g. other game clients) running on
different execution points. These other clients can then connect to the same service (e.g.
same game server).

The following diagram depicts a simple sample scenario consisting of a game server which is
connected to multiple game clients, which each is connected via a video stream to a thin client:

d User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client Client

Game
Server

d User Device
(e.g. TV, Tablet,
Phone, etc.)

Figure 33: Sample Scenario (Game Server)

// Game lobby embedded into a website:
void webserver_launch_game_cgi (

IpPort[] thinPlayerClients,
IpPort databaseIpPort)

serverDescription = object();
serverDescription.thinPlayerClients;
serverDescription.databaseIpPort = databaseIpPort;
serverDescription.sessionId = createUniqueId();
serverInst = fusionUserInstantiate(

"game server", serverDescription);

for (thinPlayerClient in thinPlayerClients)

{

clientDescription = object();
clientDescription.serverIpPort = serverInst.getIpPort();
clientDescription.sessionId
= serverDescription.sessionId;
clientInst = fusionUserInstantiate (
"game client", clientDescription);

tell thin client about game client(
"client at " + clientInst.getIpPort()):;
wait until thin client has connected to game client();

// Now we can release the service instance
// since the thin client owns it now:
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clientInst.release();

}

// Now we can release the service instance
// since the game client owns it now:
serverInst.release();

In this sample some web-based game lobby code first requests a game server from fusion. In this
request it passes the locatFigure 36ions of all game players, so that FUSION can determine the best
location of the game server taking the locations of the players into account as described above under
related services. Then after the server is created the code requests the game clients. In each request
for a game client it passes the location of the server, both for allowing FUSION to determine the best
location for that client, but also to allow the client to connect to the server.

5.2.3 FusionProvider

The provider interface is for implementing a service. It consists of a part implemented by FUSION and
a part implemented by the service. Interface pseudo-code:

// Implemented by FUSION:

Object fusionProviderGetDescription();
bool fusionProviderWantsMeAlive () ;

// Implemented by the service, called by FUSION:

bool fusionProviderCanMigrateViaVirtualMachineMigration();
bool fusionProviderCanMigrateViaSerialization();

byte[] fusionProviderSerialize();
void fusionProviderDeserialize (
byte[] serialization);

The implementation of the game server from the sample above my look like the following:

// Game server service implementation

void main ()

{

Object serverDescription = fusionProviderGetDescription();
connect to game database (serverDescription.databaseIpPort);

createSharedMemory (serverDescription.sessionId);
fusionSocketListen () ;

while (game is active
|| any client is present
|| fusionProviderWantsMeAlive ())

if (client connects via shared memory)
establish connection();

if (incoming connection)

{
decompressed stream = decompressor (incomding connection);
establish connection();

}

// Game loop:
updateGame () ;

}

bool fusionProviderCanMigrateViaVirtualMachineMigration ()

{
// Support virtual machine migration
// only when not using shared memory:
return !currentlyUsingSharedMemory () ;

}

bool fusionProviderCanMigrateViaSerialization/()

Copyright © FUSION Consortium, December 2013



D2.1 Service-centric networking architecture, security issues and initial interface Page 76 of 127
specifications

// In this case always support manual migration via serialization:
return true;

byte[] fusionProviderSerialize ()

{

return serializeGameServer () ;

void fusionProviderDeserialize (byte[] serialization)
{
deserializeGameServer (serialization);
dataBaseReconnect () ;

The corresponding client may be implemented in the following way:

// Game client service implementation

void main ()
{
// Description is passed to us by FUSION:
Object clientDescription = fusionProviderGetDescription();

if (clientDescription.serverIpPort == ownServerIpPort)
uncompressed stream = accessSharedMemory (
clientDescription.sessionId);
else

comressed stream = fusionSocketConnectTo (
clientDescription.serverIpPort);
uncompressed stream = decompressor (compressed stream) ;

}

while (game is active || fusionProviderWantsMeAlive())
{
if (server has migrated)
reconnectToServer (); // See below.

// Game loop:
updateGame () ;

bool fusionProviderCanMigrateViaVirtualMachineMigration ()
{

// Support virtual machine migration

// only when not using shared memory:

return !currentlyUsingSharedMemory () ;

}

bool fusionProviderCanMigrateViaSerialization/()

{
// In this sample we always support manual migration
// via serialization:
return true;

}

// This function is not needed when using only virtual machine migration
// together with the FusionSockets API for all communication.
byte[] fusionProviderSerialize ()
{
return serializeGameClient () ;

}

// This function is not needed when using only virtual machine migration
// together with the FusionSockets API for all communication.
void fusionProviderDeserialize (byte[] serialization)
{
deserializeGameClient (serialization);
reconnectToServer (); // See below.
reconnectToThinClient () ;
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// This function is not needed when using
// the FusionSockets API for all communication.
void reconnectToServer ()
{
if (was_connected via shared memory)
{
if (server ip == own_ ip)
{
// Used shared memory before, using it now again:
uncompressed stream = accessSharedMemory (
clientDescription.sessionId);

else

// Used shared memory before, but not anymore:

comressed stream = fusionSocketConnectTo (
clientDescription.serverIpPort);

uncompressed stream = decompressor (compressed stream) ;

else

if (server ip == own_ip)
{
// Used socket before, but shared memory now:
uncompressed stream = accessSharedMemory (
clientDescription.sessionId);

else

// Used socket before and socket now:
// No action needed, because the FusionSockets module
// supports transparent migration.

}
5.2.4 FusionEvaluator

The FUSION evaluator interface is for implementing evaluators which score possible locations of
service instances. This API consists of a part implemented by FUSION and a part implemented by a
evaluator service. Interface pseudo-code:

// Provided by FUSION

// Representation of scores
typedef map<string, float or something else> Scores;

// Ask FUSION about the score if FUSION would instantiate
// that service at the best possible location
// according to the requirements passed in the description parameter.

Scores fusionEvaluateBest (
string service,
byte[] description);

// Implemented by the service evaluator, called by FUSION:

// Return all EPs this evaluator can evaluate.
// Must at minimum return own host it is currently running on:
IpPort[] fusionGetLocationsICanEvaluate();

// Score a possible location. The parameter possiblelLocation
// will be one of the locations
// returned by fusionGetLocationsICanEvaluate.
Scores fusionEvaluatorEvaluate (
string service,
byte[] description,
IpPort possiblelLocation);
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For example, an implementation of a fusion evaluator for a game server may do the
following:

// Game server evaluator implementation
// for the sample:

// FUSION calls this function:
IpPort[] fusionGetLocationsICanEvaluate ()
{
return list of call eps on this cloud();

}

// FUSION calls this function:

Scores fusionEvaluatorEvaluate (
string service,
byte[] description,
IpPort possibleLocation)

Scores statisticsScore = map("default"
-> calcLoadScoreFromStatistics (
fusionSocketGetStatistics (possiblelLocation)));

Scores databaseScore = map ("default"
-> fusionUtilCalcNetworkDistanceBetween (
possibleLocation, description.databaseIpPort,
FUSION UTIL OPTION SLOW IS FINE));

Scores clientScores;

for (thinPlayerClient in description.thinPlayerClients)

{
clientDescription = object();
clientDescription.serverIpPort = possiblelLocation;
clientDescription.thinClientIpPort = thinPlayerClient;
Scores clientScore = fusionUserEvaluate (

"game client", clientDescription);

clientScores = max(clientScores, clientScore);

}

return max (clientScoresmap, statisicsScore, databaseScore);

Sample: Game client evaluator:
// Game client evaluator implementation

// FUSION calls this function:
IpPort[] fusionGetLocationsICanEvaluate ()
{
return list of call eps on this cloud();

}

// FUSION calls this function:

Scores fusionEvaluatorEvaluate (
string service,
byte[] description,
IpPort possibleLocation)

if (!computerHasGpuShaderModel3x0 (possibleLocation))
return 0.0; // Worst possible score

map<string, float or_something else> statisticsScore
= calcLoadScoreFromStatistics (
fusionSocketGetStatistics (possibleLocation)) ;

map<string, float or_something else>serverScore
= fusionUtilCalcNetworkDistanceBetween (
possibleLocation, description.serverIpPort,
FUSION UTIL OPTION LOSSLESS LOW LATENCY AND JITTER);

map<string, float_ or_something else>float thinClientScore
= fusionUtilCalcNetworkDistanceBetween (
possiblelLocation, description.thinClientIpPort,
FUSION UTIL OPTION LOSSY LOW_ LATENCY AND JITTER);

return min (statisticsScore, serverScore, thinClientScore);
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5.2.5 FusionSockets

Interface pseudo-code:

// Implemented by FUSION:

. fusionSocketListen(...);
. fusionSocketConnectTo (

ipPort target, ...);
. fusionSocketGetStatistics(...);

The purpose of the FUSION socket APl is to provide basically the same functionality as classical
sockets, but

* supporting transparent migration, and
* automatically collecting statistics for FUSION.

5.2.6 FusionUtil

Communication between services may be provided by FUSION in a separate API. A FUSION service
may choose to use own proprietary communication means or may use the FUSION communication
functions, which can offer additional features like transparent service instance migration. Interface
pseudo-code:

enum

FUSION UTIL OPTION SLOW IS FINE,
FUSION UTIL OPTION LOSSLESS LOW LATENCY AND JITTER,
FUSION UTIL OPTION LOSSY LOW LATENCY AND JITTER

}

Scores fusionUtilCalcNetworkDistanceBetween (
IpPort ipPorta,
IpPort ipPortB,
int options);

The utility module may contain function for standard scoring. This can be optionally used by a fusion
evaluator implementation. These utility functions provide a standard scoring for placing a list of
services each at a given execution point, where the services need a set of pair-wise connections
provided by the "connections" array. Taking into account compatibility aspects, FUSION may provide
more and more utility functions.
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6. BUSINESS MODELS

This section describes the possible business models that can use FUSION as their substrate. The
following set of figures show different options for the ownership of orchestration domains, routing

planes and the underlying IP infrastructure.

Figure 34 shows an ISP-centric business model where ISPs deploy service routers within their domain
to route to services running in their own execution zones. Each colour represents an orchestration-
routing-ISP domain. There is a common ownership across all three layers (IP, service routing and
execution) and, as such, the ISPs have privileged access to information across layers: for example the
service routers can access internal information about the IP network to obtain network topology
information and to monitor statistics that the ISP might not wish to share with third parties.
Furthermore the ISP has detailed knowledge about the location and capabilities of its execution
zones. The figure shows inter-domain connectivity between domains at the service routing level,
however this is optional as an ISP may only make its services accessible to its own customers. One
advantage of this scenario is that ISPs can easily configure their users’ equipment to access the
closest service router for making service queries/invocations — through DHCP, for example. The same
is true for the execution zones’ configuration for knowing which service router they should make

service announcements and updates towards.
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Figure 34: ISP-centric business model

Figure 35 shows a business model scenario where orchestration domains are separate from the
service routing plane which, in this model, is operated by the ISPs. The execution zones that belong
to — or are contracted to — each orchestration domain are represented by the three different
coloured areas in the execution plane. Service announcements are injected into the service routing
plane by the execution zones to the closest service router in the ISP operating the network to which
the execution zone is attached. Routing information is exchanged within and between service routing
domains to form a common, global routing plane in a similar fashion to the way IP operates today
with IGP and EGP routing protocols. Users, in this model, are able to access services deployed and
operated by any orchestration domain they are contracted to use, irrespective of the ISP they belong
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to. As in the previous scenario the users’ equipment can easily be configured to access their local
service router for invocations/queries as it is operated by their own ISP.
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Figure 35: Third-party orchestration domain business model

Figure 36 shows a model of operation where the service routers are not operated by the ISPs and in
this sense it is an over-the-top scenario. Orchestration domains own or contract execution zones and
additionally deploy service routers, possibly within their execution zones. The orchestration domains
interconnect their service routers to form a common, global service routing plane in a similar fashion
to the way the ISPs interconnected their service routers in the previous example. Because this is an
OTT mode of operation users need to connect to their closest (or at least a nearby) service router
which is no longer operated by their ISP, hence it is not as straightforward as in the previous
examples when the configuration could be done automatically by their ISP. It should be noted that in
this figure some of the execution zones are shown with multiple colours. This is to represent the case

where the same data centre is used by more than one orchestration domain.
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Figure 36: OTT business model with common service routing plane

Figure 37 shows a scenario where orchestration domains do not interconnect their service routers
and instead operate disconnected service routing planes for each orchestration domain. This

scenario is roughly equivalent to today’s CDNs.
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Figure 37: OTT business model with disjoint service routing planes per orchestration domain

Figure 38 shows the case where all three planes (IP, service routing and execution) are operated by
different entities. This option is included for completeness but is seems less likely than the other
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models above. One of the main issues concerns who would operate the service routing plane as this
would need to be a separate business entity to both the underlying ISPs and the orchestrators

N o 4

operating the services.
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Figure 38: Separate routing and orchestration domains

In addition to the five scenarios above various hybrid models are also possibilities, for example both
ISPs and orchestration domains could operate service routers in Figure 36. Alternatively ISPs
operating in the ISP-centric model in Figure 34 may also make use of remote execution zones by

contracting resources from third party data-centres.

Following the overview of business model scenarios as described above the following subsections
define the stakeholders before describing a set of business models showing the flow of money

between them.
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6.1 Stakeholders

The following is a list of the essential possible stakeholders in the FUSION ecosystem. We limit
ourselves to the essential ones. Others, like advertising agencies, etc. are not listed but they are
assumed as a possibility in some business models.

6.1.1 Users

Users are the final consumers of FUSION enabled services. They can be personal or enterprise based.
They can be accessing through wired access or through a wireless/mobile carrier. Providing services
to users is the final goal of all FUSION interactions.

6.1.2 Application Developers

Application developers are the producers of any given service. They can be a content producer, a
computation intensive provider among many other examples. It is assumed that the developer wants
to create a revenue stream to monetise the service either by direct payment (selling or renting) or
through adverts. Free services are also a possibility providing all the stakeholders participate.

6.1.3 IP Connectivity Providers

This refers to network providers commonly referred as ISPs (Internet Service Providers). They can be
wired or wireless. They can be edge ISPs (eyeball ISPs) or transit ISPS, although we expect the latter
to be less likely to participate in the FUSION framework.

6.1.4 Computation provider

Computation providers, which run FUSION execution zones, own and operate computation
equipment where services’ instances can run. These can include traditional cloud providers like
Amazon EC2 or Rackspace, open clouds provided by the ISPs or smaller third party operators.

6.1.5 Orchestration Provider

This stakeholder deploys the service entities; this could be a single entity for the entire Internet
(similar to Akamai today) or any brokerage service that interacts with smaller services with limited
footprint. Potentially they can have an interface with the user through something similar to today’s
app stores.

6.1.6 Service Routing Provider

This stakeholder is created by FUSION; it provides service routing but no service hosting. This means
that this entity provides service routing without providing execution capabilities to the orchestrator.
It is expected that the first candidates to run such entities will be the ISPs. It is crucial that they will
cooperate honestly with other service routing providers.
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6.2 Examples of Business Models

In this section we enumerate the possible business models where FUSION can operate.

6.2.1 User Pays App Developer

Here the user pays for the service directly to the application developer. This payment can be done by
money exchanging hands or through an advertising model where the user “pays” by viewing adverts.
The app developer pays the orchestrator which then pays the several execution zones to instantiate
the services.

LIS

rovider Network provide

Figure 39 - User Pays App Developer
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6.2.2 User Pays ISP

In this model the user pays its ISP for the service. In this way, the user only needs to trust its provider
with payment information, which he/she needed anyway. The ISP shares some of this revenue with
the application provider which then pays the orchestrator to instantiate the services themselves.
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Figure 40 - User Pays ISP
6.2.3 Orchestrator as a Reseller (User pays ISP)

In this scenario the user pays its local ISP which needs to pay to another service provider in case, for
example, if the user moves. In this case the ISP’s orchestrator acts as a reseller of the service and
they also pay the application developer.

Orchestrator

twork provider

Figure 41 — Orchestrator as a Reseller (User pays ISP)
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6.2.4 Orchestrator as a Reseller (User pays App Developer)

This scenario is similar to the previous one but the user pays the application developer instead. This
pays the different orchestrators which then resell the services to each other.
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Figure 42 - Orchestrator as a Reseller (User pays App Developer)

6.2.5 User pays Orchestrator

In this scenario the orchestrator acts as a front-end to the user and charges him/her directly. This is
similar to today’s app stores (Apple, Amazon, Google Play). These orchestrators establish relations
with the app developers as they do today and send payments after taking a cut. The novelty here is
that they also establish relationships with execution zones and are directly involved in the
instantiation of new services.

Network provide

Figure 43 - User pays Orchestrator
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6.3 Adopted business models

The project will initially concentrate on two business model scenarios: the ISP-centric business model
presented in Figure 34 and with the user paying the ISP as discussed in section 6.2.2, and an OTT
business model with common service routing plane as shown in Figure 36 with the user paying the
app developer as discussed in section 6.2.1. We believe that these two scenarios will cover the most
frequent service usage cases. The other scenarios (orchestrator as reseller and user pays
orchestrator), although possible, are not foreseen to be typical. Finally, despite the business model
differences they do not change significantly the operational workflow of the FUSION interactions. A
deeper consideration of these and alternative business models from the perspectives of exploitation
of the project results will be undertaken as the technical work progresses.
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7. SECURITY ASPECTS OF SERVICE ORIENTED NETWORKING

In this section we first look at current security issues in clouds and then enumerate the extra specific
issues concerning the FUSION framework.

7.1.1 Security approaches in related work

7.1.1.1 Cloud-related security

Cloud services bring a set of new security problems due to novel interactions between Cloud
Providers (CP) and Cloud Clients (CC). The following security risks are stated in the European Union
Agency for Network and Information Security’s report: “Cloud Computing Benefits, risks and
recommendations for information security” [ENISA12].

1. Resource exhaustion (under or over provisioning): As Cloud services are on-demand services,
there is the possibility that the CP won’t be able to meet an increased demand in a certain
shared resource, or to maintain a given service level.

2. Isolation Failure: In shared environments, errors or attacks can lead to situations where one
tenant has access to another tenant’s resources or data. In the case of attacks, an attacker gets
access to the resources or data of a specific customer, or even of all customers of the Cloud
service.

3. Cloud provider malicious insider - abuse of high privilege roles. Malicious insiders at the CP can
cause various kinds of damage to a CC’s assets.

4. Management interface compromise (manipulation, availability of infrastructure). The customer
management interfaces of public cloud providers are Internet accessible and mediate access to
larger sets of resources (than traditional hosting providers) and therefore pose an increased risk
especially when combined with remote access and web browser vulnerabilities.

5. Intercepting data in transit. Whenever data is transferred between different computers or sites,
there is the possibility that the transfer can be intercepted. This is especially relevant in shared
environments and when data is transferred between sites (e.g. between CC and CP).

6. Insecure or ineffective deletion of data: Deleting data from Cloud storage does not in fact mean
that the data is removed from the storage or eventual backup media. If disk storage is not
encrypted, the data could be accessed at later time by another customer of a Cloud provider.

7. Distributed denial of service (DDoS): Distributed Denial of Service attacks aim at overloading a
resource (network or service interface) by flooding it with requests from many sources
distributed across a wide geographical or topological area, so that the legitimate users are
unable to use the resource as intended.

8. Economic denial of service (EDoS). As a consequence of attacks, poor budget planning, or
misconfigurations, the cost of a Cloud service can strain the financial resources of a CC to an
extent that the service is no longer affordable.

9. Compromise of Service Engine. The service engine is a fundamental part of a Cloud service. A
compromise of the service engine will give an attacker access to the data of all customers,
resulting in a potential complete loss of data or denial of service.

10. Loss of Cryptographic Keys. The loss or compromise of cryptographic keys used for encryption,
authentication or digital signatures can lead to data loss, denial of services, or financial damages.

11. Non Cloud-Specific Network-Related Technical Failures or Attacks. Cloud services can be affected
by a number of network-related technical failures that can also occur on classic IT settings.
Examples include the loss of Internet connectivity due to failures at the CC’s site or the CC’s
Internet service provider, temporarily reduced network bandwidth on the path between CC and
CP, disruptions in the global Internet routing infrastructure leading to the loss of the network
path between CC and CP, and failures of the CP’s Internet connectivity.

12. Loss of Backups. The backups a CP makes of its customers’ data can get lost, damaged, or the
physical media on which the backup is stored can get stolen.
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13. Natural disasters Natural disasters like flooding, earthquakes, tsunamis can affect the
infrastructure of a CP. This way, a CC might be affected by natural disasters occurring far away
from its own location.

7.1.2 FUSION-specific security threat models
7.1.2.1 Confidentiality of the uvm

Short Description

In an environment where code runs in shared virtual machines, one needs to
assure no data leaks to other instances (not necessarily FUSION-specific as it
related to the lightweight container model).

Risk Rating

Probability: Low Impact: High

Comparison with
Traditional Cloud
provision

FUSION'’s lightweight containers are lighter than traditional virtual machines
since, in order to minimise instantiation time, they allow server instance
processes to share the same VM or host. This may reduce the isolation
between service instances in particular circumstances.

7.1.2.2 Service

Pollution/False Announcements

Short Description

One needs to be sure that an announcement of a replica corresponds to the
right service. This applies both to the instances themselves and to the service
routers.

Risk Rating

Probability: High Impact: Medium

Comparison with
Traditional Cloud
provision

Since anycast is at the centre of the FUSION architecture and it’s a novel
feature, this problem does not really exist in today’s clouds infrastructures.
The only scenario where this could happen today would be in layer3 anycast
but because this is done by single companies the risk is mitigated.

7.1.2.3 Service Authentication

Short Description

Service Authentication: In some services only authenticated users should be
able to send a message to be resolved/replied to (there may be even greater
security concerns re denial of service, etc. in the case of service instantiation
on demand)

Risk Rating

Probability: Medium Impact: Low

Comparison with
Traditional Cloud
provision

FUSION will allow open services to require authentication from users. This will
ideally even stop users reaching the service if they are not authorised. This is a
new feature that solves a well-known Internet problem.

7.1.2.4 Authentication of the service instantiation

Short Description

Authentication of the service instantiation: At the point of service instantiation
one needs to be sure that the publisher is authorised

Risk Rating

Probability: Low Impact: Very High

Comparison with
Traditional Cloud
provision

The orchestration plane of FUSION is a novel feature since it allows different
orchestrators to instantiate services in several execution zones. Third party
computation providers can house executions zones from many orchestration
domains within a single physical data centre. This opens new vulnerabilities in
authenticating who can instantiate in which zones/data centres.
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7.1.2.5 Performance isolation

Short Description When a service gets instantiated one needs to be sure that services cannot be
degraded on purpose by other services

Risk Rating Probability: Low Impact: Medium

Comparison with As stated in 7.1.2.1, FUSION’s lightweight containers are lighter than
Traditional Cloud traditional virtual machines since, in order to minimise instantiation time, they
provision allow server instance processes to share the same VM or host. This can reduce

the isolation between processes. If two instances are from different providers
this increases the risk of a misbehaving process affecting other process’s
performance.

7.1.2.6 Traceability

Short Description Service usage history needs to be logged for audit/trail/forensics purposes

Risk Rating Probability: Low Impact: Medium

Comparison with In FUSION services run across many execution zones, running in several

Traditional Cloud providers. To obtain a trace of service usage for forensics purposes will be

provision much more difficult and will potentially have to involve the service routing
itself.

7.1.2.7 Code Integrity

Short Description One needs to be sure that code hasn’t be tampered with before instantiation
and during service lifetime

Risk Rating Probability: Low Impact: High

Comparison with Due to the extra complexity of having services running in several executions
Traditional Cloud zones, FUSION will potentially increase the risk of code being tampered with
provision when in transit between service providers, orchestrators and execution zones.

7.1.2.8 Integrity of the monitoring system

Short Description One needs to be sure that network measurements do not get tampered with.
Risk Rating Probability: Medium Impact: Low

Comparison with The open nature of the service routing, that relies heavily on measurements to
Traditional Cloud assess, brings a new class of attacks where measurements are faked in order
provision to subvert the routing system. This will be particularly concerning if we allow

services instances to contribute measurements to the routing system.
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8. RELATED WORK

In this section we position other systems and architectures with respect to FUSION’s approach as
described in this deliverable. We focus on the comparison and positioning of the overall architectural
issues in this section: a more detailed comparison of the distributed service management dimension
of the considered architectures is contained in chapter 3 of deliverable D3.1 [D3.1]; and an analysis
of the service-aware networking dimension from the perspectives of naming, addressing, service
discovery, service binding and routing is documented in section 3.2 of deliverable D4.1 [D4.1].

8.1 Grid and Cloud Computing

A reference architecture for grids has been standardised in [OSGAO06]. An in-depth overview of grid
technologies based on the OSGA architecture has been covered thoroughly in [FOST04]. According to
the latter, at the highest level, grids can be viewed as an extension of Web Services framework to
address issues related to service semantics, e.g. service creation, lifetime / state management, and
fault management. According to the authors, OGSI (Open Grid Services Infrastructure) addresses
these issues and a Web service that complies with OGSl is referred to as a Grid service.

As grids and clouds share a lot of architectural concepts, in the following we provide their short
overview, mostly based on a comparative description [FOST08]. The latter is rather high-level and is
organised around such aspects of grids and clouds as resource management, programming model,
and application model.

8.1.1 Resource Management

Resource management in distributed computing can be viewed from several angles, and in the
following we address three of them, namely the compute model, data and monitoring. We note
however that the inclusion of data imposes also storage to be considered as a managed resource.
Moreover, other resources as network, software and services themselves can be considered as
resources in future generation grids and clouds [SCHWO5].

8.1.1.1 Compute Model

Most Grids use a batch-scheduled compute model which imposes expensive scheduling decisions,
data staging in and out, and potentially long queue times. For this reason the support for interactive
applications is not very common in Grids, although there have been efforts to enable lower latencies
to resources based on multi-level scheduling so that applications with many short-running tasks can
execute efficiently on Grids [RAICO7]. In fact, scheduling in distributed systems is a very exploited
area; one possible direction is to plug the activity migration into the scheduling framework [SAIR08].
Cloud Computing compute model differs from the above as resources in the Cloud are shared by all
users at the same time (as opposed to dedicated resources governed by a queuing system). This is
due to the fact that the basic model adopted for Cloud-based applications assumes transaction
oriented (small tasks in the order of milliseconds to seconds) and interactive applications. In many
cases latency sensitive applications can run smoothly on Clouds, but guaranteeing the required level
of QoS to the end users in general will be one of the major challenges for Clouds. In fact, scheduling
in distributed systems is a very exploited area (see e.g. [SAIRO8] and references therein); one
possible direction of research is to plug the activity (service) migration into the scheduling framework
[SAIROS].

8.1.1.2 Data

A viable option for computing in the future Internet is that it will be organised around Data, Cloud
Computing, and Client Computing. Data management (e.g., fragmentation replication, caching) will
thus play an important role. But addressing the storage problems in separation from computation
implies a lot of data movement which will soon lead to scalability issues, resulting also in low
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utilisation of the hardware resources. Thus, achieving good scalability for Clouds, Grids, and their
applications requires that data must be highly distributed, and computations must be forwarded
towards best place to execute in order to minimise the communication costs. For FUSION, it is
important to decide whether such data-aware schedulers and dispersing data close to processors is a
part of FUSION architecture or if coping with these problems will be delegated to specialised black-
boxes. In either case, appropriate representation of storage will need to be proposed in order to
achieve storage awareness of FUSION orchestration plane.

8.1.1.3 Monitoring

Abstract/unified resources offered in Clouds usually are provided by means of virtualisation, so
tracking the issues and fine-control over the resources might be more difficult than in non-virtualised
platforms. To cope with these problems monitoring in Clouds thus requires a fine balance of business
application monitoring, enterprise server management, virtual machine monitoring, and hardware
maintenance. It is worth mentioning that existing Cloud platforms often adopt existing frameworks
for monitoring services. For example Amazon’s Web Services CloudStatus [CLOUST] is implemented
using an open source monitoring and management infrastructure called Hyperic HQ [HYPEHQ].
Akogrimo Monitoring System [AKOGO5] is another example which is based on OGSA and WSRF
specifications, and uses Globus Toolkit 4 platform for the implementation of the monitoring services.
It is expected that for FUSION it will be sufficient to take a similar approach to the monitoring
framework.

Since the start of the FUSION project, the following recent related work (since 2010) has been
studied. Firstly, there are a number of papers that provide an overview and comparison of
monitoring in the cloud [M1], including specific surveys on platforms, techniques, and tools for
monitoring cloud infrastructures, services and applications as well as open issues and future
directions [M2].

Many papers highlight some specific aspect of monitoring. For these, we have selected a few of them
based on the aspect they highlight. In [M3], the PEP monitoring model is presented, focusing on
lower level monitoring and specifically study the event propagation aspect. In [M4], the authors
study the performance analysis of monitoring results aspect, and propose a performance analysis
framework to enable smart system resource monitoring in the cloud. Dhingra et al. [M5] study the
impact of how to present monitoring information to the customer and contains a proposal for a
distributed resource monitoring framework.

There also exist already many papers studying VM monitoring. For example, in [M6], they focus on
performance monitoring in KVM-based cloud environments, providing a low level detailed
explanation on capabilities, challenges and future direction concerning guest PMU development,
more specifically for perf based virtualisation performance monitoring. Secondly, in [M7], PAPI-V is
proposed, describing how to extend the PAPI hardware counter library for virtual environments. In
[M10], the authors present a monitoring framework that is capable of monitoring across different
virtualisation technologies, in what they call hybrid cloud monitoring.

Another aspect is about detecting misbehaviour in a cloud infrastructure. In [M8], the authors
discuss possible security threats through the use of several service scenarios and proposes a
methodology and architecture for detecting abnormal behaviour through the monitoring of both
host and network data.

Service and application monitoring is studied in [M9], where they present M4CLOUD as a novel
approach for classifying and monitoring application level metrics in a resource-shared cloud
environment. Network monitoring in cloud environments is studied in [M11], where they describe a
method to do low-cost in-line link measurements to reveal the true traffic-perceived service quality
in short timescales. Finally, in [M12], a scalable architecture is presented to enable real-time
monitoring in large information systems.
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Note that next to the aspects of monitoring we discussed above, there are still other aspects
important to monitoring in general. We did not take these into account here, as these fall outside the
scope of FUSION.

8.1.2 Programming Model

Programming model in grid environments is similar to that in traditional parallel and distributed
environments. It is however more complex as it has to deal with such issues as multiple
administrative domains, large resource heterogeneity, stability and performance, exception handling
in highly dynamic environments, etc. For example, applications in grids usually are loosely coupled
(i.e., the output of one may be passed as input to one or more others) and the programmer’s focus is
on management issues relating to the large numbers of datasets and tasks rather than on the
optimisation of inter-process communication. For this reason workflow systems [ZHRAO8] are more
appropriate to specify and control the execution of applications in grids. This includes controlling the
pattern of interactions between individual service components within an application (e.g., to govern
the flow of control/data through components, monitor SLA assurance and reallocate the execution,
handle exceptions, etc.). In clouds, it is also conceivable to introduce workflow capability for
advanced applications, although according to [FOST04] “Mesh-up’s and scripting (Java Script, PHP,
Python etc.) have been taking the place of a workflow system in the Cloud world, since there is no
easy way to integrate services and applications from various providers”. Workflow managers are
often designed to allow for optimisation of various system parameters, and we note there is a vast
body of work on this topic (see, e.g., [YUBUOQ5]). Current trend is to enrich the set of system-oriented
metrics (e.g., overall resource utilisation) with metrics directly related to QoS such as time to
completion or deadline [GOUGO07], [PHOSO07].

In the above context, it is important to decide on a general approach FUSION should take regarding
workflow management and scheduling. One important question that arises is whether and to what
extent FUSION can build on known solutions for workflow management while developing the
concept of service manifest. To this end FUSION first needs to explore how expressive the service
graph should be (i.e., what dependencies within the application should be modelled). In particular,
care should be taken whether workflow systems based on traditional languages like BPEL are
sufficient for FUSION in supporting dynamic service composition as they have been reported as being
deficient in this respect [DUYA12]. Moreover, it has to be analysed whether FUSION should
incorporate extended models that assume combined service composition with routing [HUSH10]
(appropriate services executed in sequence along the data path).

8.1.3 Application Model

According to [FOST04], grids are capable of supporting a wide spectrum of applications, ranging from
high performance computing (HPC) to high throughput computing (HTC). The main field of
applications for HPC are tightly coupled parallel jobs that require low-latency interconnects and are
typically executed on a single machine rather than across a wide area network; these applications
often use message passing for inter-process communication. But grids have also been successful in
the execution of more loosely coupled applications, often managed through sophisticated workflow
systems. Such applications can comprise many tasks that can be deployed using different resources
located in multiple administrative domains. In principle, there are not “paradigmatic” constraints as
to many features of tasks run in both grids, e.g. task size, uni/multiprocessor, compute/data- and
clouds intensive, static/dynamic, homogeneous/heterogeneous, loosely/tightly coupled, small/large
aggregate number of tasks, quantity of computing, and volumes of data.

FUSION targets fine-grained and distributed interactive multimedia applications that can maintain
sustainable data exchange flows between components. For this reason the main differences with
respect to grids/clouds may result from the fact that networking aspects are targeted explicitly by
FUSION, and also because the execution environment for certain FUSION applications (e.g., games)
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may be distributed by definition (and not only optional). This in turn can have impact on detailed
resource management mechanism that FUSION will need.

8.2 Cloud platforms - OpenStack case

There are multiple cloud platforms available but related state-of-the-art analysis is not the central
point in this report. We assume that data centres, and also cloud computing platforms, will become a
sustainable component of future Internet environment; a component that will be governed by its
own rules. Therefore, in this report we feel more desirable to suggest only a possible general position
of FUSION with respect to data-centre technologies or cloud computing platforms. In the following
we arbitrarily use OpenStack as a reference solution.

OpenStack is a cloud management system that defines a set of interfaces that provide three main
infrastructure (laaS) services [OpenStack]:

* OpenStack compute aka Nova, is a python-based software used to orchestrate cloud and manage
virtual machines and networks. Nova allows us to create and manage virtual servers using
machine images. To this end OpenStack supports many popular hypervisors, e.g. KVM, QEMU,
Xen, VMware.

* OpenStack Object Storage aka Swift is roughly similar to Amazon S3. Swift allows us to store
objects in massively scalable infrastructure with in-built redundancy and fail-over. It can be used
to store static data (like images and videos), make back-ups, archive data, and so on. Swift will
write copies of data to multiple redundant servers which are logically grouped into Zones. Zones
are isolated from each other to safeguard from failures. We can configure Swift and decide the
number of Zones and replicas we need to have in the system. Object is the basic storage entity in
Swift. An object can be anything like a document, audio, or video data. A container, which is
similar to buckets in S3, allows you to organise objects by grouping them. Swift simply provides
APl endpoints to store and manipulate objects. We cannot use Swift as a file system and objects
are not accessible via any file sharing protocols.

* OpenStack Image Service aka Glance, is responsible for storage, discovery, and retrieval of virtual
machine images. Glance can be configured to store VM images in Object Storage, Amazon S3, or
simple file-system. Glance-registry and Glance-api are the two important components of Image
Service. Glance-registry stores and retrieves metadata about images. Nova interacts with Glance
using Glance-api for querying and retrieving actual VM images.

Moreover, Open VSwitch defines OpenStack network APl which is intended to provide "network
connectivity as a service" between devices managed by OpenStack compute service. The service is
based on the notion of virtual networks that effectively are virtual L2 broadcast domains. We notice
that on a high abstraction level, such virtual domains could correspond to ISONI VSNs, but as the
focus of IRMOS is more on services, the detailed models of its VSNs differ significantly from those of
OpenStack.

In OpenStack, a related network-level construct is Open VSwitch [http://openvswitch.org/] that is a
NFV-like virtual switch that supports many useful features, e.g.:

* Visibility into inter-VM communication via NetFlow, sFlow(R), IPFIX, SPAN, RSPAN, and GRE-
tunnelled mirrors

* LACP (IEEE 802.1AX-2008)

* Standard 802.1Q VLAN model with trunking

* Asubset of 802.1ag CCM link monitoring

e STP (IEEE 802.1D-1998)

* Fine-grained QoS control

*  Support for HFSC qdisc

* Per VM interface traffic policing
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* NIC bonding with source-MAC load balancing, active backup, and L4 hashing

* OpenFlow protocol support (including many extensions for virtualisation)

* |Pv6 support

*  Multiple tunnelling protocols (Ethernet over GRE, CAPWAP, IPsec, GRE over IPsec)
* Remote configuration protocol with local python bindings

* Compatibility layer for the Linux bridging code

¢ Kernel and user-space forwarding engine options

* Multi-table forwarding pipeline with flow-caching engine

Our current working assumption is that FUSION could use the set of APIs to the cloud infrastructure
(OCCl in particular) for accessing laaS services and thus maintaining a level of isolation from internal
details of data center architecture. Such approach would position FUSION as an application running
on top of cloud platforms. As such FUSION may thus require to request specific capabilities from the
cloud platform — a topic that will be studied in more detail by other WPs throughout the project.

8.3 Naas for the convergence of Cloud Computing and Networking

SOA principle has been adopted in many Cloud service provisioning platforms. An observed trend is
towards exposing network services in a SOA manner - in the form of Network as a Service (Naa$) -
based on the network virtualisation principle.

An extensive overview of related work is given in [DUYA12]. It is believed that SOA for delivering
NaaS based on network virtualisation enables to rely on SOA standards for network service
description, discovery, and composition etc., thus allowing to combine network resources and
services with computing and storage Cloud services. The survey focuses mainly on state-of-the-art in
service description, discovery and composition as applied to NaaS with applications to
heterogeneous services (composite Network-Cloud services), and on the support of Cloud features
such as adaptiveness, elasticity and mobility. In particular, several existing options for network
services description languages are discussed including attempts to describe both computing and
networking resources; moreover, the challenges related to describing QoS and specifying user
requests for network services are stressed. Regarding service discovery, existing standards are
reviewed to conclude that network service discovery framework for Naas$ still requires development;
identified challenges relate to QoS models, dynamicity, heterogeneity and mobility in service
discovery. Service composition is discussed from the point of view of such required features as
dynamicity and adaptivity (in addition to heterogeneity imposed by combining cloud and networking
services). To this end, new approaches beyond traditional workflow systems such as those based on
WS-BPEL are needed. For example, combined service composition and network routing is expected
to optimise service composition in a network. Two particular works that have adopted this approach
are described briefly in the following.

FP7 project GEYSERS proposes a novel architecture for coordinated provisioning of optical and IT
resources as well as end-to-end service delivery to overcome limitations of network domain
segmentation [VICA11]. They start from a novel resource plane definition that covers both network
and IT resources, and design a network control plane that is able to provision such compound
services in an on-demand fashion. It is assumed that such a plane will be operated based on
appropriate extensions of GMPLS signalling protocols. From the FUSION perspective, the applicability
of this framework to support fine-grained network services still needs to be evaluated. In contrast to
GEYSERS focused on optical networks, and aiming at a shorter-term solution in order to avoid
changes to existing network infrastructure, in [GHMA12] an architecture compliant with NaaS is
proposed for fine-grained network resource reservation for the purpose of VM migration. The
solution uses an overlay network for fine-grained QoS-enabled data path setup in the transport
network based on anycast destination address to support VM migration (in the service routing
control plane, and the Cloud management platform is a client for the Network management
platform). The limitations of the latter proposition relate to that only VM image transfer delay is
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considered and other application communication requirements are disregarded; moreover, the
anycast routing scheme (routing protocol, form of routing information) remains unspecified.
Nevertheless, the general concepts presented therein may be inspiring for FUSION provided that the
combined service and transport network routing paradigm is adopted in FUSION.

8.4 Service-aware networks

In this section we present in more detail selected architectures that attempt to combine grid/cloud
services and network services.

8.4.1 IRMOS/ISONI (Intelligent Service Oriented Network Infrastructure)

The general goal of IRMOS is to enhance SLAs in a grid/cloud computing platform with strict quality
guarantees in the transport network. To this end, all elements of IRMOS platform (computational
nodes, network links and storage boxes) should be able to provide guarantees to individual activities
while the physical resources are shared across multiple services.

IRMOS provides means for automatic deployment of services on best fitting resources distributed in
a network. The deployment and instantiation of developers’ service is based on an abstract
description of all the execution environment requirements of the service (in the form of Virtual
Service Network, VSN), including the description of the interconnections between service
components and their individual QoS demands. Within the IRMOS platform, ISONI (Intelligent Service
Oriented Network Infrastructure) implements the overall architecture including resource control
plane, path manager, and execution environment.

Computing and storage resources are managed by ISONI’s resource manager in a way similar to that
in clouds/grids (virtualisation, workflows, resource reservation, etc.). This is the responsibility of the
execution environment that provides global resource management and allocation policy for
scheduling services enhanced with real-time attributes. In particular, the composition of applications
into service components in a workflow, and their timing requirements are taken into account.

IP overlay (capable of using also other transport technologies).
IRMOS provides a framework for a QoS enabled cloud/grid
IP overlay or clean-slate? architecture where QoS provisioning is based on the use of
proprietary ISONI eXchange Box nodes to build virtual
networks for each instance of a composite service.

Service composition is based on the model of Virtual Service
Network (VSN) being a service graph describing both
computational, storage and network level requirements of a
service. A decision about where and when the application
service components are to execute is made at reservation time;
after that no changes are made concerning the component
during run time such as migrating to another machine in case of
breaking the SLA or finding a better resource for execution.

Composite services

Execution environment in grid style using task scheduling based
on timing requirements of services and advanced reservation
Service execution mechanisms. Changes to OS kernel required. Service
encapsulation is achieved through VM. Workflow management
realised on the IRMOS level

Information service is used by infrastructure providers to
Service publication/registration | advertise the ISONI capabilities with the purpose to select
(suggest) the appropriate candidates for deploying the
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applications (based on the capabilities, price, ...).

Workload manager orchestrates services globally at PaaS level
Service orchestration while Workload enactors (one per each VSN) orchestrate service
components within respective VSN.

Table 4: IRMOS/ISONI and FUSION
8.4.2 IMS/SIP-based architectures

IMS is a service control overlay based on SIP designed by 3GPP and ETSI for controlling session-based
services in 3GPP and converged NGN networks. Apart from session-oriented services it also supports
other functions as, e.g., simple subscribe/notify service, and instant messaging and presence based
on SIP.

IP overlay. IMS provides a framework for control and delivery
of session-based services over diverse IP-based networks with
IP overlay or clean-slate? QoS support by the underlying networks, enhanced with
simple composition of component services that can be plugged
into the service through rerouting the signalling messages.

Triggered at the level of S-CSCF based on IFC that constitute a
simple workflow management logic and match trigger criteria
with application servers.

Chaining at the IMS level is in principle static in the sense that
IFC is a static structure; dynamic behaviour is only possible due
to matching/no matching trigger criteria and/or due to
application server decisions reflected in the type/content of SIP
messages they issue.

Composite services

Application hosting infrastructure is not managed by IMS.
However, services (application servers) can well be hosted in
clouds. Service execution is triggered due to IFC and results in
directing SIP messages to appropriate application servers.

Service execution

Could be based on IMS presence service model based on SIP

Service publication/registration
presence.

IMS does not manage the location or number of running service
instances. Only rerouting of messages by e.g. S-CSCF could be
based on load balancing criteria, however, it is out of the scope
of the standard.

Service orchestration

Table 5: IMS and FUSION
8.4.3 NGSON: Next Generation Service Oriented Network

NGSON [NGSO11] was proposed by the IEEE, and is designed as an overlay framework for control
and delivery of composite services over heterogeneous IP-based networks. In NGSON, service
configurations can be customised and adapted to the dynamic context of users, devices, services and
networks.

NGSON specifies a functional architecture that provides advanced service and transport-related
functions to support context-aware, dynamically adaptive, and self-organizing networks. To this end
it defines functional entities and abstract protocol mechanisms, but does not provide their efficient
implementation. These functions are realised by strategically located nodes with service-specific
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forwarding and control capabilities. According to NGSON, the general organisation of “the network”
follows the split into the signalling/control plane (to achieve service awareness) and transport plane.
NGSON is declared to target current transport networks (IP, and also other technologies), and also
cloud networks (in the sense that the services supported by NGSON may run in clouds, and also the
functions of NGSON platform can be run as cloud applications, e.g., for auto-scaling purposes).

IP overlay or clean-slate?

IP overlay. NGSON provides a framework for control and
delivery of composite or component services over diverse IP-
based networks (e.g. legacy IP, P2P, IP Multimedia Subsystem),
possibly with QoS support by the underlying networks.

Composite services

No standardised protocol to register/publish composite services.

No standardised notation to specify composite services.

In[LEKA12], the Business Process Execution Language is used for

workflow management of composite services.

Dynamic chaining should be possible: decide at runtime how to

chain base services in an appropriate order and which instances.

Service Composition element optimises for performance the

selection of service instances in a composite service.

« a single service instance (or a list of suggested instances) is
typically obtained from Service Discovery and Negotiation
function.

» Negotiation for optimal QoS for a single service invocation
(both network and service aspects) is up to Service Policy
Decision function.

Service execution

Application hosting infrastructure is not managed by NGSON.
However, in [Shan] clouds are abstracted as services, and VM
operations are forwarded as service requests to the underlying
clouds.

Service publication/registration

Provided by the Service Register functional entity. It assists
Service Routers to discover where and how to route a service
request. It maintains current location information of the
services.

Service discovery and resolution

Service Discovery and Negotiation is typically used when
abstract service is specified in the request. The service requestor
may provide a number of criteria, such as service interface,
availability, QoS, SLA, version, network area, regional area. The
Service Discovery and Negotiation function obtains a list of
similar or relative services (instances) and returns it to the
requester. In a second phase, Service Routing will contact the
Service Register functional entity for name-to-address mapping.

Service orchestration

NGSON does not manage explicitly the location or number of
running service instances. However, various forms of
coordination between native NGSON and service orchestration
are feasible, e.g., configuring NGSON’s service routing based on
data available from either NGSON context information
management function or service coordination, or based on
service discovery and negotiation policies.
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Table 6: NGSON and FUSION

Suitability for FUSION: NGSON identifies several individual architectural components and
functionalities that are relevant for FUSION. As of today, only the functional architecture of NGSON
has been standardised, but no interface specifications are available. NGSON provides capabilities for
service composition which is meant as a process of coordinating the invocation of several basic
services (service atoms) in response to a single message received from the requester. The latter
resembles in essence the operation of Initial Filter Criteria known from IMS (as opposed to IMS,
NGSON does not impose any particular notation for such purposes, and one example is BPEL which
has been adopted in a demo implementation of NGSON as reported in [LEKA12]). We note however
that classical notations for service composition such as BPEL or IFC do not cater for transporting
service data in channels that do not use service signalling which is an important aspect in FUSION.
Thus, it seems that the extent to which FUSION can rely on such frameworks still needs further study.
Our initial guess is that at least their appropriate extensions would be mandatory for the adoption in
FUSION. Overall, NGSON could serve as a blueprint for the service routing and related capabilities in
FUSION.

8.4.4 CCN (Content-Centric Network)

CCN architecture (a.k.a. NDN — Named Data Networking) has been proposed under the heading of
Information-Centric Networks as a clean-slate solution for the future Internet [JSTP09], [NDN]. CCN
defines a forwarding plane of a transport network that operates based on the route-by-name
principle assuming hierarchical names of content objects. According to CCN, content objects (data
chunks of named content) are delivered in response to requests specifying the name of the
requested object.

Clean slate, although CCN “faces” can run on top of different

IP overlay or clean-slate? ) .
E layers including IP.

Not within the scope of CCN — composition has to be built at the
“application” layer with respect to CCN.

Composite services

Not within the scope of CCN — the architecture is only concerned

Service execution . .
with the transport of (authenticated) named data chunks.

Could be built using routing capabilities of CCN (however,
Service publication/registration routing is still an open issue in CCN, although several
propositions have been proposed).

Not within the scope of CCN — has to be built at the

Service orchestration . .
“application” layer with respect to CCN.

Table 7: CCN and FUSION
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8.4.5 NetInf

NetInf has been developed by FP7 SAIL project as a proposition for future Internet ICN. NetInf layer
defines NetInf protocol for named data object publishing, searching and retrieval along with name-
based routing and name resolution services.

IP overlay in the sense that can run on legacy IP networks, and
that data transfer can be over TCP/IP stack. Clean slate in the
sense that Netinf protocol can run without IP support. In the
latter case NetInf data transfer resembles CCN, although
reverse path is maintained by using label stack header (similar
to Via header in SIP or HTTP).

IP overlay or clean-slate?

Composite services Beyond the scope.

Service execution Outside the scope of Netinf.

PUBLISH method is used for publishing data objects including
Service publication/registration | objects themselves and their metadata. Details depend on the
policies of the Name Resolution Service.

Service orchestration Outside the scope of Netinf.

Table 8: NetInf and FUSION
8.4.6 PSIRP/PURSUIT

PSIRP/PURSUIT architecture introduces an ICN-like architecture that is based on a publish-subscribe
forwarding paradigm where DHT-based Pub/Sub rendezvous function allows for matching
publications with subscriptions, topology management and formation function serves the routing
purposes to provide delivery information to the forwarding function.

Clean slate. Pub/Sub model assumed for data registration and
search capabilities at the Rendezvous layer, and source routing
IP overlay or clean-slate? based on Bloom filters is used in the data plane. Source routes
are delivered by a separate Topology management and
formation layer.

Not within the scope of PURSUIT — composition has to be built at

Composite services
the “application” layer with respect to PURSUIT.

Not within the scope of PURSUIT — the architecture is concerned

Service execution . .
with the transport of (authenticated) named data chunks.

Could be built adopting the capabilities of the Rendezvous
function. PURSUIT claims to support mobility, so Rendezvous
potentially offers a good platform to support dynamic service
instantiation.

Service publication/registration

Not within the scope of PURSUIT - has to be built at the

Service orchestration “ N
application” layer.

Table 9: PSIRP/PURSUIT and FUSION
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8.4.7 SERVAL

Serval [NDGK12] is a new modification to the internet architecture where service access is central.
Serval allows users to find a service instance based on several metrics such as load and latency, and
maintain a connection with that service instance. Serval introduces a service oriented layer (named
SAL — Service Access Layer) located between the transport and the network layers. Its main role is to
enable applications to communicate using service names.

IP overlay. Serval adds a Service Access Layer that sits between
the transport and network layers. The SAL maps service names

IP overlay or clean-slate? to IP addresses before connections are made. Once a
connection is established, communication is based on standard
IP.

Not within the scope of Serval — composition has to be built at

Composite services “ . e .
the “application” layer with respect to Serval.

Serval does not manage the service placement. On-path Serval
Service execution load-balancers can choose which service instance a request is
forwarded to. The logic behind is out of scope of Serval.

An application calls bind() on a Serval socket API and registers a
Service publication/registration local forwarding entry. Local service controller can propagate
this local announcement to upstream service controllers.

Serval does not manage the location or number of running
service instances. More generally, Serval has not insight into the
performance at the level of network/compute resources; it does
not define any monitoring capabilities for the service controller
plane to gather relevant performance statistics. Thus, in order to
make the service controller plane resolve services based on
performance, which is important for FUSION, dedicated means
(e.g., monitoring) would have to be provided.

Service orchestration

Table 10: SERVAL and FUSION

8.4.8 eXpressive Internet Architecture (XIA)

XIA [HADL12] is the result of collaboration between Boston University, Carnegie Mellon University
and the University of Wisconsin/Madison. XIA recognises the shift from IP-based Internet to new
architectures focusing on different principals, such as content or users. XIA describes an architecture
designed to support different principals and allows new principals to be added over time. It also
allows incremental deployment due to a fall back mechanism for routers which don’t support XIA.

Both. XIA addressing uses clean slate service ID addressing
IP overlay or clean-slate? schemes, but it allows for intermediate routers to fall back to
IP based addressing if XIA is not supported.

No explicit support provided. Chaining requests is possible: the

Composite services . i .
P user gives flexibility to the network to find the content.

XIA does not manage the execution process. Each application

Service execution .
uses its own protocol.

Service publication/registration | services use a XIA socket API: a service calls bind() to bind itself

Copyright © FUSION Consortium, December 2013




D2.1 Service-centric networking architecture, security issues and initial interface Page 103 of 127
specifications

to the public key of that service. This bind inserts the service ID
in the host’s forwarding table. Available services are propagated,
following a given scope. Propagating this information is future
research.

XIA does not manage the location or number of running service

Service orchestration .
instances.

Table 11: XIA and FUSION

8.4.9 Summary: Models for Service-Aware Networking

In this section we summarise the discussion given in previous subsections by presenting a high-level
overview of the way selected state-of-the-art architectures enable networks to be service aware.

8.4.9.1 IRMOS

Network resources: IRMOS/ISONI follows a bandwidth-broker based network resource management
in the style of NaaS that is additionally coupled with compute power resource management by
means of a common deployment manager functional block. Virtual network resources are provided
by proprietary ISONI IXB nodes that overlay virtual links on physical network resources using ISONI-
specific policies and mechanisms.

Compute resources: explicit, full control in Grid/Cloud style in coordination with network resources
(due to common Deployment Manager). Actually, the IRMOS platform provides two main models for
cloud services: PaaS (IRMOS level) and laaS (ISONI level).

Storage resources: as compute resources, and based on the Lustre file system.

8.4.9.2 IMS/SIP

Network resources: Out-of-band service routing plane based on SIP can access the SPD FE (Service
Policy Decision) that derives and translates service requirements and negotiates network-level QoS.
Essentially, physical transport of user data is separate from request routing.

Compute resources: no sophisticated capabilities for controlling compute resources. Simple re-
routing of SIP initial requests is possible by S-CSCF (Serving Call-Session Control Function) function
towards application servers in order to trigger services; this re-routing is done based on Initial
Filtering Criteria (IFC) downloaded by S-CSCF from HSS on user’s registration. An IFC is a logical
expressions matching a message to bind triggers with application servers and from FUSION
perspective can be seen as a simple service graph.

Storage resources: no such capabilities.

8.4.9.3 NGSON

Network resources: NGSON follows the IMS-style approach to use service routing overlay that can
request QoS levels for data streams from the transport layer. Here, SPD FE (Service Policy Decision)
derives and translates service requirements (seen at the service routing level in request messages) to
the transport network QoS and negotiates network-level QoS. Essentially, physical transport of user
data is thus separate from service request routing. For example, CD (Content Delivery) FE is assumed
to support different types of cache functions with multiple protocols like, e.g., HTTP, FTP, P2P (such
as BitTorrent), and RTSP.

Compute resources: implicit control based on static/dynamic information about services stored in
SDN FE and SReg FE, and through appropriate choices of SC FE and SR FE. However, NGSON does not
take decisions about service deployment.
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Storage resources: only implicitly controlled through the internal capabilities of content delivery (CD)
FE (CDN-like black-box entity).

8.4.9.4 CCN

Network resources: can only control transmission links (strategy layer), but currently “strict” QoS
guarantees are not possible.

Compute resources: no control; should be built “over the top” of CCN.
Storage resources: no control apart from the caches; should be built “over the top” of CCN.
8.4.9.4.1 SERVAL

Network resources: currently no QoS control possible; this function could be attributed to the
service controller layer, but additional capabilities like monitoring should be built into the platform.

Compute resources: no control; possibly could be built at least partially into service control layer.

Storage resources: no control apart from the caches; possibly could be built at least partially into
service control layer.
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9. SUMMARY

This document presented an architecture for service-oriented networking as envisioned by the
FUSION project. The document introduced the advantages and benefits of adopting a service-
oriented approach for a range of applications/service use cases, drawing the set of requirements for
the system behaviour. The overall system architecture was defined, identifying the key functional
blocks and the interfaces between them. A range of possible business models were introduced
highlighting the interactions between the different actors and roles involved in the provision and
operation of services. A set of security threat models were analysed to identify security issues
beyond those applicable to general cloud computing systems. Finally, related architectures,
technologies and projects were reviewed highlighting the relevance to the FUSION system and
identifying the key differences of the FUSION approach to service-oriented networking.

This deliverable presented the initial specification of the FUSION system — the service architecture
and service networking are being studied in WP3 and WP4 respectively and more a more detailed
description of the functions, algorithms and protocols are available in deliverables D3.1 [D3.1] and
D4.1 [DA4.1]. The initial overview of the interfaces and interactions specified in this document will be
refined in deliverable D2.2 in year 2 of the project. The final system architecture will be documented
together with an evaluation of the cross-layer models in deliverable D2.3 in year 3 of the project.
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11. APPENDIX A: SERVICE COMPONENTS

This legend explains the diagram elements used in Appendix B: Service Components and Appendix C:
Service Configuration Scenarios. It distinguishes between stateless and stateful services. It also
distinguishes basic classes of communication data streams between service instances.

Accepts a single stateful connection Establishes a single stateful connection

from another services to another service >
Stateful
Accepts a variable number of stateful Service (User®) May establish a variable number of stateful
connections from other services Instance connections to other services >
Accepts stateless requests Stateless May issue a variable number of
from any number of others services . 4 stateless requests from other services
-------------------.-»N Serv|ce(user) N ...

Instance

Image request-answer
Execution Point

Rich video or audio stream connection
(including touch/mouse/keyboard/gamdpad input)

. It is not a service instance but only a service user instance
Other data stream connection if the box has no incoming arrows

Single-Person Dashboard

Connect to external Video/Audio Stream

Request Private Dashboard
(Input —, video/audio stream <) >

(Input —, video/audio stream «)

- N

Stand-alone Get Images
Offer Video Chat Stream Dashboard (or EPG) (Request —, answer «)
(video/audio stream —) > N

Server for a Multi-User Dashboard with Individual Views

Connect to shared Dashboard
(state synchonization data flow <)

Synchronized
M\l Dashboard (or EPG)
Server
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Client for A Multi-User Dashboard with Individual Views

Connect to external Video/Audio Stream
(Input —, video/audio stream «)

N >
Get Images
(Request —, answer «)

Request Shared Dashboard Client

(Input —, video/audio stream <) SynChron ized

I\l Dashboard (or EPG)
Client

Connect to shared dashboard server
(state synchronization data flow <)

Video Encoder or Decoder

Rich Video Stream
(Input —, video/audio stream <)

: Rich Video Stream
Video Converter (Input —, video/audio stream <)
> N (e.g. Encoder

/ Decoder)

Server for a Private Image Collection

Images
(Request —, answer ) Private Image
Collection Server

Video on Demand (VoD) Server

Request VoD
(Input —, video/audio stream ) VoD / AoD

> N Server

Single-Player Game

Launch game session
(Input —, video/audio stream «)

Single-player
Game

> N
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Multi-Player Game Server

Launch multi-player game
(state synchronization data flow <) > Multi-player

Game Server

Multi-Player Game Client

Launch game client
(Input —, video/audio stream <)

Connect to game server
Multi-player 1 (state synchronization data flow <)

Game Client

> N

Augmented Reality Overlay Renderer

Rich Video Stream
(Input —, video/audio stream «)

Request Location Based Information
(Request —, answer <)

------------------->

Augmented Reality
Overlay Renderer

- N

Location Based Services Index/Database

Provides Location Based Information

(Request —, answer ) Location Based
> N Services Index

Web Browser

Rich Video Stream
(Input —, video/audio stream «)

& N Web Browser
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Face Recognition in Video Stream

Video Stream
(Video stream —, results <) Video

> 1 Face Recognition

Face Recognition in Individual Images

Image
(Image —, answer <) Image

Face Recognition
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12.APPENDIX B: 7 SERVICE CONFIGURATION SCENARIOS

Augmented Reality Application on User-Device

Ena User Device
(e.g- TV, Tablet,
Phone, etc.)

Video

Focotor Renderer

Thin
Client

Tracker Relocalizer

Ena User Device
(e.g- TV, Tablet,
Phone, etc.)

Video o
Elecotor Renderer
Thin
Client

Tracker Relocalizer
Video
Source

ISP Execution Point

Object
Recognition

Mapper

ISP Execution Point

Object
Recognition

Mapper

Thin Client Augmented Reality Application

End User Device ISP Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

Tracker
Video
Source

End User Device ISP Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Video
Decoder

Thin
Client

Tracker
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Thin Client Augmented Reality Application, Partly in Cloud

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

Video
Source

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

Video
Source

ISP Execution Point

Video
Decoder

Tracker

ISP Execution Point

Video
Decoder

Tracker

Renderer

Relocalizer Mapper

Renderer

Relocalizer Mapper

Object
Recognition

Thin Client Augmented Reality Application, More in Cloud

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

ISP Execution Point

Video
Decoder

Tracker

ISP Execution Point

Video
Decoder

Tracker

Renderer

Relocalizer

Renderer

Relocalizer

Object
Recognition

(613
Mapper
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VoD Dashboard

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

ISP Execution Point

Triple Video Chat

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

Thin
Client

Thin
Client

ISP Execution Point

ISP Execution Point

Video
Encoder

Video
Encoder

Video
Encoder

Video
Encoder
(Unused)

ISP Execution Point

Video
Encoder

Encoder

Video
Encoder
(Unused)
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Stand-alone
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Dashboard

Stand-alone
Dashboard
(Unused)

Video

Decoder

Video
Decoder

Video

Decoder

(Unu

Video
Decoder

Video
Decoder

Video
Decoder

Video
Decoder
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Video
Decoder

Video
Decoder

Video
Decoder

Video
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Helping a Friend with his VoD Dashboard

End User Device ISP Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

ISP Execution Point

Helping a Friend with his VoD Dashboard with Video Chat

End User Device ISP Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

Video
Decoder

Decoder

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

ISP Execution Point
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Synchronised VoD Dashboard

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin
Client

Synchronised VoD Dashboard on same ISP

End User Device
(e.g. TV, Tablet,
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Client
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Phone, etc.)

Thin
C
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Video
Encoder

Video
Encoder
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Video
Encoder

Stand-alone
Dashboard

Video
Decoder

Video
Decoder

Stand-alone
Dashboard

Stand-alone
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Video
Decoder

Video
Decoder

Stand-alone
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Dashboard
Client
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Dashboard
Client
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Video
Decoder
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Server
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Decoder Server
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Merged Synchronised VoD Dashboard on same ISP

End User Device ISP Execution Point Cloud Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Combined
Client Encoder Dashboard

Video
Decoder

Synchr. Video

Dashboard A .
Cevar Decoder

Video
4 Decoder
End User Device
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Combined
Client Encoder Dashboard

Common VoD Dashboard

End User Device ISP Execution Point Cloud Execution Point
(e.g. TV, Tablet,
Phone, etc.)

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

Video
Decoder

Video Stand-alone
Encoder Dashboard

Video
4 Decoder
End User Device
(e.g. TV, Tablet, Video
Phone, etc.) Decoder

Thin Video Stand-alone Video
Client Encoder Dashboard Decoder

VoD
Server

ISP Execution Point
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Common or Synchronised Client-Based VoD Dashboard
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Common Image Collection Dashboard on same ISP
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13. APPENDIX C: DETAILED MEDIA DASHBOARD USE CASE

The Media Dashboard use case is an example of an advanced 2D or 3D user interface that is
rendered in the network as a FUSION service and that represents a next-generation electronic
program guide. Next to the basic functions you typically expect from a Media Dashboard, like
changing the channel, browsing through the TV guide, etc., it can also be a portal to other types of
content, including personal videos and pictures, games, or other interactive FUSION applications.

Technically such a media consumption scenario may be implemented by a combination of multiple
service software components, for example like the following. Of course, depending on the situation
not all service components are necessary, or additional service components are used.
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Figure 44: Media Dashboard Service Components
This diagram contains different possible service components:

* A private 3D Ul contains the dashboard for one particular user, for example a 2D or 3D desktop
for per-user functionality. For example, the top user in the diagram may play a multi-user video
game in this private 3D UL.

* In this particular scenario the private 3D Ul is rendered not on the end-user device (for example
because it is a mobile or thin TV device which is not powerful enough). Instead the 3D Ul is
rendered in a service software component which is running not on a cloud server, but on a ISP
server which is closer to the user and therefore providing more responsiveness. The user may
transfer the 3D Ul seamlessly from one end-user device to another, for example from his home
TV to his mobile device because he has to leave his home.

* Transferring the video stream from the private 3D Ul service to the end-user device requires
encoding and decoding the video stream, which may not be statically integrated into the
particular software, but implemented as separate services. In the above sample diagram the
video encoder services are demonstrated.
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* A shared 3D room client is a dashboard which is shared between multiple persons. This is for
example the place where two persons can browse a photo library together, browse available
VoD series episodes, or have a shared image viewer and VoD selections.

* The cloud hosts various service components for media consumption, e.g. VoD servers, image
libraries or game servers, which transfer or stream their data to the dashboard service
components.

Client and Backend Interactions

In Figure 45, the sequence diagram is shown of a client connecting to a running EPG service instance.
Solid arrow lines represent message-based communication, whereas dotted arrow lines represent
streaming communication; similarly, black lines represent in-band FUSION communication, whereas
blue lines represent out-of-band non-FUSION communication. As can be seen from the diagram, we
modelled the video feeds to be streamed outside of FUSION, though this may only be required for
legacy clients using legacy video streaming formats.

STB EPG
“EPG"(“Rsp”, SessionDesc) 1
Protocol
1 “Rsp”(“Feedback”, “Ctl”, “VideoFeed”, SessionDesc") Negotiation
“VideoFeed”(e.g. RTP Frames) Nm
emmmm e mmmmmmmmmmmoooooo s il

“Ctl"” (e.g. TCP connection keep-alive)

v

Figure 45: Client connecting to an EPG Service Instance

Basically, the client first issues a service request for the service with the name “EPG”, along with a
number of FUSION and non-FUSION service request parameters, describing the context of the
session. These parameters may include the response channel over which to send back the result, the
resolution and quality, an identification of the end user, etc. As a result, the (by FUSION) selected
service instance will create and prepare a temporary session to handle the service request, and send
back a response to the client. This response may include how and where to contact the EPG session,
including the video feed and feedback channel. There may also be a control channel that acts as a
keep-alive so that the EPG service session can detect when the client disconnects (abruptly), after
which it may decide to terminate the session.
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The service instance itself will typically also communicate with a number of input sources that
provide the main content for the EPG service. This may include both FUSION sources as well as
external sources, and both static and interactive content. In the latter, the EPG service may have to
forward the feedback coming from the client to the other service, so that the client appears to be
directly interacting with the other service (e.g., a game client). This is backend service diagram is
depicted in Figure [ref].
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Figure 46: Backend Resources for EPG Service Instance
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