
 

Future Service Oriented Networks 

www.fusion-project.eu 

© Copyright 2013 FUSION Consortium 

University College London, UK (UCL) 

Alcatel-Lucent Bell NV, Belgium (ALUB) 

Telekomunikacja Polska S.A., Poland (TPSA) 

Spinor GmbH, Germany (SPINOR) 

iMinds vzw, Belgium (IMINDS) 

 

Project funded by the European Union under the  
Information and Communication Technologies FP7 Cooperation Programme 
Grant Agreement number 318205 

 

 

Deliverable D4.1 

Initial specification of service-centric routing protocols, 

forwarding & service-localisation algorithms. 

Public report, Version 1.0, December 20 2013 

Authors  

UCL David Griffin, Miguel Rio, Raul Landa, Richard Clegg 

ALUB Frederik Vandeputte 

TPSA Dariusz Bursztynowski 

SPINOR Folker Schamel 

IMINDS Piet Smet, Pieter Simoens, Bart Dhoedt 

  

Abstract This deliverable describes the initial functional requirements, interfaces and protocols 
as identified by the FUSION consortium for realizing a network layer that provides 
name-based selection of service instances. In addition, we report algorithms for 
network-driven selection of service instances and geographically-sensitive routing 
protocols providing delivery to the closest members of a group. 

Keywords FUSION, service-aware networking, requirements, algorithms 

 

 

 

 

 

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 2 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Revision history 

Date Editor Status Version Changes 

17/09/2013 Pieter Simoens TOC 0.1 Initial ToC 

15/10/2013 Pieter Simoens Initial Version 0.2 Partial input 

02/12/2013 Pieter Simoens Draft 0.3 All sections updated 

18/12/2013 Pieter Simoens Stable 1.0 Ready for review 

20/12/2013 Pieter Simoens Final 1.1 Review comments included 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 3 of 53

 

Copyright © FUSION Consortium, December 20 2013 

EXECUTIVE SUMMARY 

This document is a public deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 
project. It describes the functional requirements and interfaces of the service routing layer in the 
FUSION architecture. The key challenge for this layer is the routing and load-balancing of service 
requests to the best instance, given the existence of many different potential execution points and 
dynamically instantiated service instances. 

This document has three main contributions: 1) the description of the functional requirements for 
the service routing layer, 2) the specification of the architecture blocks and their interfaces, and 3) 
the presentation of service-oriented algorithms for service selection and routing updates. 

The realization of efficient name-based selection of services instances as the main primitive of the 
service routing layer breaks down into different functional aspects. These include appropriate 
naming and addressing schemes, efficient propagation of service availability between service 
routers, and selection strategies.  

This deliverable provides an initial specification of architecture and interfaces for the service routing 
plane. A scan of existing approaches revealed many design considerations that are discussed in this 
document, such as centralized or distributed selection, the interworking between service instances 
and the network in the selection strategy, or the QoS guarantees. Also more subtle issues arising 
from distributing service instances across the network are being addressed, including security and 
evolvability. The protocols and interfaces between the components of the FUSION service routing 
layer are described at meta-level rather than in concrete implementation details. In year 2, these 
protocols and interfaces will be further refined and implemented.  

The last part of this deliverable describes algorithms for instance selection and for delivery of routing 

table updates. The network-driven service selection algorithm maps user demand to a fixed set of 

service instances, taking into account both network latency and the size of the request queue for 

each service instance. The result of this mapping is then translated into routing tables for each 

service router for runtime load-balancing.  

The proposed “N-casting” algorithm introduces geographic awareness in overlay topologies. The 

algorithm provides delivery to the n-closest members of a group and can be used for efficient 

propagation of service availability updates across zones.  

The work presented in this deliverable serves as the basis for the remainder of the FUSION project. In 
the next year, the service routing layer architecture and protocols will be further extended. Selection 
algorithms will be further refined, in particular a more distributed approach will be studied. An 
update of the current deliverable is scheduled at the end of year 2. 

 

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 4 of 53

 

Copyright © FUSION Consortium, December 20 2013 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY .................................................................................................................. 3 

TABLE OF CONTENTS .................................................................................................................... 4 

1. SCOPE OF THIS DELIVERABLE ................................................................................................. 6 

2. FUNCTIONAL REQUIREMENTS FOR THE SERVICE ROUTING LAYER .......................................... 6 

2.1 Naming and addressing ......................................................................................................................... 6 
2.1.1 Naming and identification ................................................................................................................. 6 
2.1.2 Addressing ......................................................................................................................................... 8 
2.1.3 Requirements .................................................................................................................................... 8 

2.2 Forwarding............................................................................................................................................. 9 
2.3 Routing .................................................................................................................................................. 9 
2.4 Service instance selection .................................................................................................................... 10 

2.4.1 Client-driven .................................................................................................................................... 11 
2.4.2 Network-driven................................................................................................................................ 11 
2.4.3 Router operations for selection ....................................................................................................... 11 
2.4.4 Requirements for Instance Selection ............................................................................................... 12 

2.5 Monitoring ........................................................................................................................................... 12 
2.6 Data plane QoS .................................................................................................................................... 13 
2.7 Security and integrity .......................................................................................................................... 13 
2.8 Evolvability and backwards compatibility ........................................................................................... 13 

3. NETWORK LAYER ARCHITECTURE AND INTERFACES ............................................................. 14 

3.1 Design considerations.......................................................................................................................... 14 
3.1.1 Native IP anycast ............................................................................................................................. 14 
3.1.2 Serval ............................................................................................................................................... 15 
3.1.3 Extensions to DNS ............................................................................................................................ 15 
3.1.4 Use of an established application layer protocol ............................................................................ 16 
3.1.5 A new overlay protocol .................................................................................................................... 16 
3.1.6 IP tunnelling .................................................................................................................................... 16 
3.1.7 Design considerations: conclusions ................................................................................................. 17 

3.2 Existing approaches to Service-Aware Networking ............................................................................. 17 
3.2.1 IRMOS/ISONI (Intelligent Service Oriented Network Infrastructure) ............................................... 18 
3.2.2 IMS/SIP-based architectures ........................................................................................................... 19 
3.2.3 NGSON: Next Generation Service Oriented Network ...................................................................... 20 
3.2.4 CCN (Content-Centric Network) ....................................................................................................... 23 
3.2.5 NetInf............................................................................................................................................... 24 
3.2.6 PSIRP/PURSUIT ................................................................................................................................ 25 
3.2.7 SERVAL ............................................................................................................................................ 26 
3.2.8 eXpressive Internet Architecture (XIA) ............................................................................................. 27 
3.2.9 Summary: Models for Name Resolution and Network Control ....................................................... 28 

3.3 Service Routing Node Design and Operations ..................................................................................... 30 
3.3.1 Service router .................................................................................................................................. 31 
3.3.2 Zone gateway .................................................................................................................................. 31 
3.3.3 Service instance selection ................................................................................................................ 32 
3.3.4 Service request forwarding operations ........................................................................................... 33 
3.3.5 Service Announcement and Routing ............................................................................................... 34 
3.3.6 Session set-up .................................................................................................................................. 35 
3.3.7 Monitoring ...................................................................................................................................... 35 

4. INTERFACE AND PROTOCOL SPECIFICATION ......................................................................... 36 

4.1 Service query and invocation interface ............................................................................................... 36 
4.2 Naming ................................................................................................................................................ 37 
4.3 Service announcement ........................................................................................................................ 37 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 5 of 53

 

Copyright © FUSION Consortium, December 20 2013 

4.4 Routing Hint Interface ......................................................................................................................... 38 
4.5 Monitoring Interface ........................................................................................................................... 38 

5. NETWORK-DRIVEN SERVICE SELECTION ............................................................................... 38 

5.1 QoS-aware service selection for low-latency applications .................................................................. 39 
5.2 Related work ........................................................................................................................................ 39 
5.3 Load distribution.................................................................................................................................. 40 

5.3.1 Assumptions .................................................................................................................................... 40 
5.3.2 Problem statement .......................................................................................................................... 41 
5.3.3 Algorithm outline ............................................................................................................................ 42 
5.3.4 Evaluation........................................................................................................................................ 42 

5.4 Statistical load-balancing in service routers ........................................................................................ 42 
5.5 Experimental results ............................................................................................................................ 44 
5.6 Future work and Research Challenges ................................................................................................ 44 

6. ROUTING ALGORITHMS ....................................................................................................... 45 

6.1 n-casting Overview .............................................................................................................................. 45 
6.2 Evaluation ............................................................................................................................................ 47 
6.3 Related Work ....................................................................................................................................... 47 

7. CONCLUSION ...................................................................................................................... 49 

8. REFERENCES........................................................................................................................ 50 

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 6 of 53

 

Copyright © FUSION Consortium, December 20 2013 

1. SCOPE OF THIS DELIVERABLE  

This deliverable focuses on the service routing layer of the FUSION architecture. The principal 
functionality of this layer is the name-based selection between service instances running in multiple 
execution zones. Realizing this functionality requires the cooperation of many functional blocks such 
as naming, addressing, routing, monitoring and selection algorithms.  

In the first year of the project, the FUSION consortium decided to adopt a breadth-first approach 
when tackling the multidimensional problem of service-oriented networking. This allowed to identify 
valuable results and experiences from past projects, and to set research priorities for the remainder 
of the project. 

The architecture, interfaces and algorithms presented in this deliverable will be gradually expanded 
throughout the project’s lifetime. For example, the algorithm presented for service selection is 
centralized: each service instance reports the size of its request queue to a central entity. As more 
advanced monitoring algorithms and service advertisement protocols have been defined, we will aim 
for more decentralized approaches. 

2. FUNCTIONAL REQUIREMENTS FOR THE SERVICE ROUTING LAYER  

Multiple instances of a service component (SCI) will be running in geographically dispersed execution 
zones. The service routing layer interconnects these execution zones and routes service requests to 
the most appropriate instance, taking into account monitoring information, service parameters and 
orchestration layer policies.  

This selection primitive induces many functional requirements. The goal of this section is to set out 
all functional blocks of the service routing layer. 

2.1 Naming and addressing 

Multiple instances of the same service will be simultaneously running in one or more execution 
zones. The service routing layer must provide the functionality to name and address services and 
service instance components. Whereas a naming scheme is used for identification of the 
communicating entity (i.e. which service?), the addressing scheme refers to the actual network 
location of this entity (i.e. where is an instance running). Note that naming schemes should not 
necessarily be human readable. 

The naming and addressing scheme used in the routing layer should decouple identification from 
location. All instances of the same service should be identified by a common service name; but each 
instance should also be individually addressable. In this respect, FUSION is related to the research 
initiatives on name-based networking (CCNx, NetInf, PSIRP…), but differentiates from this work by 
focusing on name-based selection of services instead of content. Especially for services, decoupling 
naming from addressing allows for late-binding: the address of the selected instance is not 
necessarily known in advance by the service component that wants to set-up a session. 

2.1.1 Naming and identification 

In FUSION, the following entities need to be identifiable: 

• service: the service identifier (ID) refers to the functional entity that was registered by the 
service provider through the Orchestration Layer (see D3.1). Each instantiation of the service is 
identifiable by the same service ID. Today, domain names are used to identify webservices. This 
namespace is globally governed by IANA. 

• service instance: likely, multiple instances of the same service will be deployed (in one or more 
execution zones). Stateful services may need to identify a particular service instance. Using the 
locator of that instance for this identification violates the requirement of separating naming from 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 7 of 53

 

Copyright © FUSION Consortium, December 20 2013 

addressing. For example, the instance may have been migrated to another host. After migration, 
the instance should keep the same instance identifier, but will have been assigned another IP 

address. Today, service component instances can be identified by their tuple (hostIP, 

hostPort), which actually reflects the location of that instance. 

• sessions: a FUSION service session is the association between a client and sevice instance within 
which a set of one or more communication channels exists between a client and the service 
instance serving the request. Each service instance can typically handle multiple service requests 
(FUSION service sessions) in parallel. Endpoints must thus be able to relate messages to the 
correct FUSION session; e.g. when multiple messages are exchanged to negotiate session 
parameters. Note that a FUSION session should not be confused with an application session, 
which may comprise one or more independent FUSION service sessions. 

FUSION service session identifiers may also be used in service routers where, in combination 
with transport-related attributes, they may serve to configure forwarding rules (e.g. through 
OpenFlow protocol) or flow-based QoS for related communication channels, and at the 
endpoints for demultiplexing to the correct service instance. Today, sessions are only identified 
at the endpoints and transparent to the network (apart from middleboxes like NAT). If multiple 
threads are listening on the same port, demultiplexing is performed on the tuple (clientIP, 
clientPort, serverIP, serverPort). 

Important design considerations for the FUSION namespace include [BARI2012]: 

• ensuring globally unique names: namespace authority 

• name integrity 

• name structure: flat or hierarchical 

No two services can share the same name and that name must refer to the same service across all 
orchestration and routing domains. For service instances, this constraint can be relaxed: instances 
may only be identifiable inside a single routing domain. Ensuring globally unique names is typically 
performed in two ways: either by relying on a namespace authority (typically hierarchical) or by 
relying on hashing.  

One possibility is to leverage today’s DNS system and naming hierarchies. In this case, services could 
be published under the domain name of the service developer. DNS is already used by CDN providers 
like Akamai for identification of content. Alternatively, the name allocation could be completely 
decentralized, allowing each service provider to construct its own name. To ensure uniqueness, one 
relies on the statistical properties of hashing functions. 

Name integrity implies providing guarantees that the identified service instances are genuine. Some 
initiatives in Information-centric networking achieve this goal by making the name self-certifying: the 
name is a hash of the owner’s public key. For example, NetInf names have two parts. The first part is 
the hash of the owner’s public key, and the second part is a fixed ID. A digital signature stored in 
meta-data ensures content integrity. For FUSION, self-certifying names seems to be infeasible since 
there is no static content to be signed. Other measures will be needed to avoid spoofing of service 
names. 

For the naming structure, one can discriminate between flat and hierarchical names. Hierarchical 
names have been proposed by Van Jacobson [VST09]. Hierarchies are based on organizational 
structures, folder structures, etc. However, this naming scheme introduces fixed interdependencies 
that can be avoided by flat namespaces. For example, with flat name spaces organizational changes 
do not necessarily reflect in name changes. 

NetInf [SAIL2013] names are flat  (i.e., have a flat part) when considering name comparison, e.g. 
when checking whether some content is available in the cache. However, NetInf names are not flat 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 8 of 53

 

Copyright © FUSION Consortium, December 20 2013 

(contain a routable part that allows for prefix aggregation) when considering routing of messages. 
Routing schemes can take into account the content of the authority part of the URI when considering 
how to route requests or do name resolution. For FUSION, we may adopt and extend the NetInf 
naming scheme, which is currently on standardization track [RFC6920]. 

The addressing scheme is used to route traffic to the physical attachment point of the host of the 
targeted entity. Given the huge number of service instances that will be running in the network, the 
addressing scheme is preferably based on IPv6. By using IPv6, the FUSION architecture can be 
deployed on the existing Internet infrastructure. 

Table 1 lists the different entities present at the service routing layer. 

 

Entity Identifiable? Addressable? 

Service yes no 

Service instance yes yes, based on IPv6 

Session yes no 

Table 1: Identifiable and routable entities for the service routing layer 

2.1.2 Addressing 

The network layer must provide functionality for mapping names to addresses. One service name 
must be mapped on multiple service instance names and/or service instance addresses. Since the 
address of a service instance is tightly coupled to its host, the address might change during the 
lifetime of this component.  

Service instances running in Execution Zones might be migrated or shut down, and new service 
instances might be instantiated by the Zone Manager (e.g. to optimize resource usage) or the 
Orchestration Layer (see D3.1). Mobile clients may attach to another subnet (e.g. when changing 
from LTE to Wi-Fi). In this case, the service instance running on the client will be assigned a new IPv6 
address.  

2.1.3 Requirements 

The requirements for naming and addressing in FUSION are listed below: 

 

Req no. Description Level
1
 

NA-1 Each service is identifiable by a globally unique name. M 

NA-2 Each service instance is identifiable by a globally unique name. S 

NA-3 
The naming scheme for services and service instances is decoupled 
from the underlying hosting and network infrastructure. 

M 

NA-4 
A global governing procedure for generation of service names and 
service instance names is defined by FUSION. 

M 

                                                           
1
 The abbreviations indicate the level of importance and follow the MoSCoW method. 

http://en.wikipedia.org/wiki/MoSCoW_Method 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 9 of 53

 

Copyright © FUSION Consortium, December 20 2013 

NA-5 
IPv6 is used as addressing scheme for individual service component 
instances. 

M 

NA-6 The network layer offers name-to-address translation functionality. M 

NA-7 
Service sessions are identifiable by the communicating service 
instances. 

M 

NA-8 Service sessions are identifiable by intermediate network routers. C 

2.2 Forwarding 

The forwarding of data by the FUSION service routers and endpoints underpins all FUSION service 
router layer functionality. Both FUSION signalling information and application-specific data must be 
forwarded.  

We envision the FUSION forwarding plane as running on top of today’s IPv6 stratum, but stretching 
beyond the host network attachment points to the individual service instances. As such, the 
forwarding plane also handles the exchange of signalling and application-specific information 
between instances running on the same host. 

Signalling information includes at least management of service sessions, monitoring information 
andd routing table updates.  

Inter-process communication between service instances can use various mechanisms, from single-
host communication through shared memory or pipes, to socket-based communication between 
different hosts. FUSION should not confine the range of available IPC mechanisms. Because it is 
unfeasible to provide all possible IPC channels, service components may set-up communication 
channels (both intra- en inter-host) that run outside of the FUSION forwarding plane. Basic 
information to be used for setting such channels can be exchanged by means of FUSION signalling. 

 

Req no. Description Level 

DP-1 
The forwarding plane transports signalling information between 
FUSION network elements. 

M 

DP-2 
The forwarding plane forwards application layer data exchanged 
between service component instances. 

C 

DP-3 
Applications can establish communication channels outside of the 
forwarding plane. 

M 

 

2.3 Routing  

Multiple zones may advertise the same service component, and service instances may come and go. 
Service routers must be provided with the necessary information to construct their forwarding 
tables. The advertisement of service information may go beyond the mere announcement of service 
instantiation; it may also include monitoring information (detailed in section 2.5). The exchange of 
routing information may use various mechanisms, from simple flooding to all neighbours to more 
sophisticated routing algorithms as those that will be developed by FUSION. The N-casting algorithm 
presented in section 6 provides delivery to the n-closest members of a group, and is one possible 
strategy to optimize exchange of routing information. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 10 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Execution zones must announce the availability of services by injecting this information via the zone 
gateway. These announcements only indicate that the zone will serve requests for that particular 
service, but does necessarily discloses any information on the actual number of running instances. 
For example, execution zones may decide to instantiate on request (late binding). A corollary of this 
requirement is that service availability is announced at zone granularity. 

As described in Deliverable 2.1, the service routing layer is composed of multiple autonomous 
routing domains each running a proprietary routing protocol. A routing domain includes all FUSION 
service routers that are under the authority of the same FUSION network provider. Domains peer via 
edge service routers in a default-free zone (DFZ), as in today’s Internet. FUSION will specify the 
routing protocol for this DFZ and may study additional intra-domain protocols. 

Service announcements will be forwarded between all service routers of the same domain. However, 
inter-domain service announcement may be governed by business policies from both the service 
provider and the network provider. Service providers may impose geographical constraints on its 
customer base, and network providers may use the service announcements for traffic engineering to 
and from peering domains. 

 

Req no. Description Level 

ROU-1 Execution zones announce the availability of services. M 

ROU-2 Service routers exchange service announcements. M 

ROU-3 
The forwarding of service announcements can be restricted by 
business policies. 

S 

ROU-4 
Service routing domains peer in a default-free zone with a FUSION 
specific routing protocol. 

M 

 

2.4 Service instance selection 

The basic primitive of the service routing layer is to deliver service requests to an instance of this 
service by selecting between the many zones that advertise the service. Various parameters can be 
taken into account: application-specific metrics, monitoring information from the network and the 
hosting infrastructure and business policies.  

Essentially, the service instance selection is the process of translating a service name into the IP-
locator of the selected instance2. This name resolution should not necessarily be a single step (e.g. 
querying a name resolution service like DNS), but may occur gradually by name-based forwarding of 
service routers. Each service router further refines the selection process by choosing the next branch 
of the path towards the finally selected execution zone.  

Ultimately, one service router will translate the service name into the public IPv6 address of the 
selected service instances. This service router may be the zone gateway, but may also happen earlier 
in the request path. However, name resolution can also be used in to identify intermediate routers. 
For example, one routing domain might use name resolution to determine the gateway of the next 
routing domain. 

                                                           
2
 This IP address does not necessarily reflect the physical host of the selected instance. For example, this 

locator may be the IPv6 address of the execution zone gateway. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 11 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Service requests can be handled in two ways by the service routing plane. Clients may ask the service 
routing plane to take an active role in the decision process (network-driven) or may only need 
support in the discovery of candidate instances (client-driven). Between these two extreme variants 
of the selection process, intermediate ways will be studied by FUSION. For example, network 
management policies may restrict the forwarding of requests to a specific subset of the zones, or 
services may ask the FUSION network layer to only discover instances that meet certain QoS 
requirements. 

2.4.1 Client-driven 

In the client-driven variant, one service instance requests the service routing plane to construct a list 
of candidate instances of a specific service. Service routers may forward requests to multiple 
neighbours. Service instances receiving this request may choose to ignore the request, or to reply 
with a service offer. The requesting instance autonomously selects one candidate among all received 
offers. Then the establishment of the actual session for data exchange may be run completely 
transparently to the FUSION routing plane.  

The advantage of this client-driven selection scenario is that application-specific metrics can be taken 
into account by the requesting client service. The disadvantage is that the selected candidate may be 
suboptimal with respect to network parameters. Services can be highly dynamic, and the time 
needed for the client to collect a list of candidates, query each candidate with application specific 
parameters and the actual establishment may be too high. Also in this scenario, QoS management 
may be limited, since the actual data transfer session may be running outside of the FUSION 
framework. 

2.4.2 Network-driven 

In the network-driven scenario, clients request the service routing plane to carry out the instance 
selection. In the simplest case, routers will forward service requests on only one neighbour, although 
more complex policies can also be considered. Note that the service router plane will only perform 
the selection process at the granularity of the execution zone. It is left to the execution zone (zone 
manager in particular) to load balance incoming requests to the hosted service instances. 

The advantage of this network-driven selection scenario is that network monitoring information or 
QoS policies can be taken into account more comprehensively compared to the client-driven case. 
Moreover, as the request is being forwarded, the necessary QoS reservations can be made. A major 
limitation of this scenario is that only rather generic service selection parameters can be used for 
reasons of scalability and generality in the service routers. This may limit the quality of the selection 
process in terms of the resultant service performance. 

2.4.3 Router operations for selection 

For intelligent selection, service routers may perform more advanced actions than merely consulting 
the forwarding table and transferring the request to one outgoing interface.  

These actions include: 

• forward the request to one or more neighbours 

• query a name resolution service to resolve the requested name into the locator (IPv6) of the next 
FUSION network element involved in the selection process 

• contact the service orchestration layer, e.g. to boot a new instance, before forwarding the 
request 

The implementation of these actions requires appropriate interfaces towards the monitoring 
infrastructure and the FUSION Orchestration Layer. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 12 of 53

 

Copyright © FUSION Consortium, December 20 2013 

2.4.4 Requirements for Instance Selection 

The table below lists all requirements related to the service instance selection process. 

Req no. Description Level 

SEL-1 
Service routers deliver service requests to one or more zone 
gateways advertising the requested service.  

M 

SEL-2 
Different selection strategies can be used in different parts of the 
service routing plane, even within a single routing domain. 

S 

SEL-3 
Service routers can fork requests to multiple neighbours and leave 
the final selection to the initiating service component. 

S 

SEL-4 
The service routing layer performs selection at least at the level of 
the zone gateway. 

M 

SEL-5 
Service routers can take more advanced actions than forwarding, 
e.g. querying a name resolution service or contacting the service 
management layer. 

S 

SEL-6 
Service routers have some level of decision autonomy w.r.t. to the 
orchestration layer 

S 

 

2.5 Monitoring  

The FUSION service routing layer requires monitoring infrastructure to provide an up-to-date view on 
the network and server load. Relevant network-layer metrics include bandwidth and latency, but also 
parameters more directly related to services should be monitored, such as service demand patterns 
or server load. Monitoring interfaces are required between the service routers and the Orchestration 
Layer, and between the service routers and the underlying network.  

Service routers, including zone gateways, can take part in the monitoring framework by reporting 
statistics to the Orchestration Layer on service demand patterns. Statistics may be reported by 
routers grouped by neighbour, source address of the requesting instance, etc. 

The service availability can be monitored via the abstraction of session slots, which is introduced and 
discussed in detail in D3.1. Session slots are a service-invariant and easy-to-use metric indicating the 
availability of resources for that particular service. Zone gateways will advertise their available 
session slots. 

Since many services will be hosted by execution zones and the demand per service can be highly 
variable, the optimal selection strategy for routing service instances should be adaptive. Therefore, 
service routers may directly consume and react to monitoring updates.  

Another important consideration is the degree of network awareness in FUSION. In the most general 
case, when there is no monitoring information provided by the underlying network, the service 
routers will have to actively gather network monitoring information. In this case, service routers 
could request to be notified of instance that was finally selected for a request. In other cases, e.g. 
when a FUSION service routing domain coincides with a trusted IP domain (e.g. of an ISP), more 
detailed network information could be available.  

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 13 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Req no. Description Level 

MON-1 Service routing plane elements exchange monitoring information. M 

MON-2 
Service routing plane can interface with the monitoring 
infrastructure of the underlying IPv6 plane. 

M 

MON-3 
FUSION routers are notified of the selected instance of requests they 
have forwarded. 

C 

2.6 Data plane QoS  

Service components can establish long lived flows between them. The goal of flow management is to 
provide QoS guarantees by engineering the data traffic routing.  

An important design consideration is the degree of network awareness that is taken into account 
during the selection process. This was already discussed in the previous section for monitoring 
information, but is equally important for the selection process. Service routers could take into 
account the IPv6 QoS mechanisms for their service request routing.  

Existing data plane models offer no or only limited QoS support. In general, it is unrealistic to assume 
that the FUSION Orchestration Layer or the FUSION service routers would be able to configure or 
reserve resources in the underlying IP stratum on end-to-end basis. Emerging Network-as-a-Service 
(NaaS) paradigms typically refer to the aggregation of long-lived flows, whereas FUSION is more 
focusing on individual sessions. Local resource reservation schemes could resemble, e.g., those 
known from IMS (PCRF and Rx interface). 

At this stage, the FUSION consortium decides to assign lower priority to providing QoS mechanisms 
in the service routing plane. 

 

2.7 Security and integrity 

The service routing layer can only take a supporting role in providing security and integrity in the 
FUSION service routing plane. As described in D2.1, most security aspects should be handled and 
provided by the FUSION Orchestration Layer. 

The most important challenge to be addressed is to ensure that a service request is routed to an 
instance (or zone) that truthfully exposes the service. Measures must be taken to avoid that 
malicious services spoof the namespace. 

 

Req no. Description Level 

SEC-1 The selection mechanism is robust w.r.t. service instance spoofing. M 

SEC-2 
Forwarding of encrypted binary data between Service Component 
Instances is supported. 

M 

 

2.8 Evolvability and backwards compatibility 

Evolvability means that the FUSION architecture can be gradually deployed over today’s Internet, 
rather than starting from a clean-slate design. Starting from an overlay network on top of the IPv6 
stratum, more and more functionality could gradually be included natively in the network layer. This 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 14 of 53

 

Copyright © FUSION Consortium, December 20 2013 

also means that the FUSION routing protocols and selection strategies should cope with the situation 
in which not all parts of the network understand the FUSION syntax.  

Second, FUSION should be backwards compatible with legacy services. This might require the 
development of adapters between today’s socket API and the FUSION network API.  

 

Req no. Description Level 

EB-1 
The FUSION network layer can operate as an overlay of today’s 
IPv4/IPv6 networks. 

M 

EB-2 
The FUSION network layer is backwards compatible with legacy 
services. 

S 

 

3. NETWORK LAYER ARCHITECTURE AND INTERFACES  

3.1 Design considerations 

Before we decided which solutions FUSION would adopt we explored several scenarios and analysed 
their advantages and disadvantages and how much potential they would have to meet FUSION’s 
requirements described in section 2.  

3.1.1 Native IP anycast 

This scenario uses IP addresses (IPv4 or IPv6) as names. A service gets allocated an IP address which 
gets announced. The routing protocol announces the several replicas (e.g. execution zones where 
the service is accessible) from different places in the network and builds the distribution trees and 
install IP entries in normal routing tables. Different routers will point to different servers. Session slot 
and evaluating function can be sent as an extension to BGP. 

When a service is going to be deployed, the service orchestrator requests an IP address. This can be 
done in real-time by an organization like IANA. The orchestrator will attempt to send an estimation 
of which ASes will have copies of the replicas. 

The address allocator will try to choose an address that minimizes fragmentation in the address 
space and returns it to the service orchestrator which then deploys the services and allocates the IP 
address given. 

The IP address gets announced through BGP to the Internet. Extensions to BGP may have to be 
defined to help with the selection at each point in the network. 

If service geography changes significantly, the orchestrator may request a new address with the new 
parameter and migrate its users to the new address maintaining both of them for some time. 

IP addresses may be obtained from DNS without any changes to today’s operation. Potentially TTLS 
need to be managed properly for appropriate address migration. 

Advantages: 

• It works with today’s routers  

• No need for service routers 

• No changes to end systems stacks 

• Incremental deployment 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 15 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Disadvantages: 

• How to allocate the IP addresses in an efficient and coordinated manner (We would need to 
estimate what is the absolute best aggregation that we would be able to achieve, in order to 
estimate the minimum fragmentation induced in routing tables. If this minimum is excessive, 
the problem needs to be solved first) 

• How to build the distribution trees minimizing fragmentation (one possibility is to use 
compact routing and smart allocation of names) 

• How to do “load-balancing” in real-time. Selecting based on parameters from the service 
and/or client 

• Limited possibility for parameter based forwarding decisions 

• Very hard to do multi-metric, especially session slots. At first glance one would need one 
“forest (set of anycast trees)” per metric 
 

3.1.2 Serval 

Serval was presented in [NDKG12] and proposes a new Service Access Layer (SAL) that sits above an 
unmodified network layer, and enables applications to communicate directly on service names. The 
SAL provides a clean service-level control/data plane split, enabling policy, control, and in-stack 
name-based routing that connects clients to services via diverse discovery techniques. By tying active 

sockets to the control plane, applications trigger updates to service routing state upon invoking 
socket calls, ensuring up-to-date service resolution. With Serval, end-points can seamlessly change 
network addresses, migrate flows across interfaces, or establish additional flows for efficient and 
uninterrupted service access  

Advantages: 

• Helps with mobility 

Disadvantages: 

• Operating system stacks need to change 

• Applications need to change 

It would be difficult to meet all set of FUSION requirements 

 

3.1.3 Extensions to DNS 

This scenario uses extensions to DNS to implement service resolution. Requests are issued as normal 
DNS query which returns IP address(es) of machine(s) running the instance(s). This is an incremental 
change to existing architecture with Hierarchical naming. One would need a novel routing protocol to 
be run between DNS servers. The DNS interface from end hosts could remain the same. 

Advantages: 

• No change to the IP 

• No change to end system stacks 

• Minimal change to apps 

• Offers the possibility of return of several options and let the end system decide 

Disadvantages: 

• Extra delay for resolving the query 

• Very difficult to implement service invocation 

• It is a packet based protocol which is more difficult to extend 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 16 of 53

 

Copyright © FUSION Consortium, December 20 2013 

• To implement full list of requirements one would need to change the client/application 
interface with the DNS 

• Tied to a very specific name space. Difficult to extend to full URIs or different name spaces 

 

3.1.4 Use of an established application layer protocol 

This family of solutions consists of using a well-established application level protocol and extend it to 
implement FUSION functionality. The two most representative candidates were HTTP and SIP. 
Service request resolutions or invocations would consist of GET or INVITE commands and then 
extensions would have to be defined for these protocols to implement our list of requirements. The 
implementation of service router functionality would be delegated to proxies. 

Advantages: 

• Extensive know how in the community on how to deploy these services 

• There is partial match of some of the functionality needed for the FUSION requirements (for 
example HTTP REDIRECT could be used to inform clients of another server) 

Disadvantages: 

• Interaction between clients and servers is not a complete match to FUSION requirements 

• Some security requirements match madly with these protocols 

• Routing protocol requirements would need to be fitted as extensions to these protocols. 
 

3.1.5 A new overlay protocol 

This family of solutions involves an application layer protocol present at the end nodes and service 
nodes. The client and servers run an application layer library used to route the request. Server 
routers are application layer entities running in the network. This option can be used to contact the 
service instances directly or the zone managers that can return an identifier.  

Advantages: 

• No change to IP 

• Possibility of complex parameter based forwarding decisions 

• Incremental deployment 

• All set of requirements can be met 

Disadvantages:  

• Needs the deployment of a new protocol, a new set of service routers 

• Applications need to be modified 

 

3.1.6 IP tunnelling 

Here the “end2end” packet gets encapsulated in an IP packet which gets passed to the service 
router. Service routers decide where to forward the packets and encapsulate in the new tunnel. 
Conceptually this is similar to an overlay solution but functionality is done at network layer. 

Advantages: 

• Little change to routers 

Disadvantages 

• Work needs to be done in routers 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 17 of 53

 

Copyright © FUSION Consortium, December 20 2013 

• End system stacks or applications need to be modified 

By putting functionality in the network layer it is difficult to implement more elaborate functions 

 

3.1.7 Design considerations: conclusions 

After careful consideration on the pros and cons of all the alternatives above we concluded that the 
FUSION solution will diverge to consider two approaches: 

• A new overlay text based protocol which will try to achieve all the requirements of FUSION. 
This will be the main service routing solution of this project. We concluded that on balance it 
would be worth the extra costs of developing a new protocol in order to achieve the desired 
functionality. None of the existing alternatives allows the implementations of all FUSION 
requirements. To do this we will get inspiration from the community experience in designing 
and deploying several of our candidates, especially DNS, SIP and HTTP. We expect service 
routers to be run primarily from network providers in the same “spirit” as DNS. 

• An exploratory native layer solution that proposes changes to the control plane of IPv6 
anycast and can implement a subset of the requirements with a low number of modifications 
to today’s Internet fabric. This will also be used as a comparison of cost/benefit with the 
main solution above. 

 

3.2 Existing approaches to Service-Aware Networking  

In this section we compare briefly several state-of-the-art architectures with respect to the way of 
enabling networks to be service aware. We will evaluate each architecture against the same criteria, 
summarized in the following comparison table: 

 

Integration with IP 
Is the architecture conceived as an overlay of IP or as an 
overlay? 

Network layer interface offered 
to Service Component Instances 

What is the functionality provided by the network? How do 
services talk to the network? Is the traditional socket API still 
valid? 

Structure of naming scheme for 
Service Instances and Service 
Instance Components 

Is the naming scheme flat or hierarchically structured? 

Routing of session data 
Is application data routed through the overlay, or directly over 
IP? 

Service advertisement 
How are services registered and advertised through the 
network?  

Instance selection 
What is the actual selection mechanism to bind requests to 
instances? 

Addressing scheme for service 
instances 

How are service instances being addressed? IPv6 or another 
scheme? 

Support for late-binding 
Should a requesting instance know the locator of the remote 
service it wants to communicate with? 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 18 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Routing table population What is algorithm to construct routing tables? 

Forwarding policy 
Can routers take intelligent decisions when forwarding 
requests? 

 

3.2.1 IRMOS/ISONI (Intelligent Service Oriented Network Infrastructure) 

The general goal of IRMOS [SAIR08] is to enhance SLAs in a grid/cloud computing platform with strict 
quality guarantees in the transport network. To this end, all elements of IRMOS platform 
(computational nodes, network links and storage boxes) should be able to provide guarantees to 
individual activities while the physical resources are shared across multiple services. 

IRMOS provides means for automatic deployment of services on best fitting resources distributed in 
a network. The deployment and instantiation of developers’ service is based on an abstract 
description of all the execution environment requirements of the service (in the form of Virtual 
Service Network, VSN), including the description of the interconnections between service 
components and their individual QoS demands. Within the IRMOS platform, ISONI (Intelligent Service 
Oriented Network Infrastructure) implements the overall architecture including resource control 
plane, path manager, and execution environment. 

The overall coordination of service deployment process in ISONI is done by the Deployment Manager 
who in functionally centralised way matches computing and network resources by negotiating 
needed resources with Resource Manager and Path Manager, respectively. 

Computing and storage resources are managed by ISONI’s resource manager in a way similar to that 
in clouds/grids (virtualisation, workflows, resource reservation, etc.). This is the responsibility of the 
execution environment that provides global resource management and allocation policy for 
scheduling services enhanced with real-time attributes. In particular, the composition of applications 
into service components in a workflow, and their timing requirements are taken into account. 

The unique feature of ISONI consists in integrating into one platform the network resource 
management and allocation functions and cloud services. This integration is based on the concept of 
virtual service networks with QoS guarantees created for each service instance, and Path Manager is 
the key functional block that implements related functions. In particular, Path Manager is responsible 
for resource discovery, selection and required configurations and supervision of all network 
allocations required during the VSN life-cycle. Path Manager can be thought of as a bandwidth 
broker whose operation could comply the NaaS paradigm. It adopts a network-resource model 
derived from the ITU-T G.805 series. A 2-level hierarchical architecture of Path Manager in IRMOS 
strictly corresponds to the hierarchical organisation of IRMOS platform into IRMOS “nodes” that 
contain (gather sets of) IRMOS “physical hosts” and IRMOS “domains” that are composed of 
physically interconnected IRMOS nodes.  

 

Integration with IP 

IP overlay (capable of using also other transport technologies). 
IRMOS provides a framework for a QoS enabled cloud/grid 
architecture where QoS provisioning is based on the use of 
proprietary ISONI eXchange Box nodes to build virtual networks 
for each instance of a composite service. 

Authentication and security 

Relies on out-of-the-box solutions as IPSec for virtual networks, 
SSH for the client and WS-Security for PaaS services. In 
particular, ISONI Gateway maintains IPSec tunnels for inter-
domain communication within a given VSN, and uses WS 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 19 of 53

 

Copyright © FUSION Consortium, December 20 2013 

interface for external clients; it is implemented using Globus 
Toolkit 4 including its Grid Security Infrastructure Framework. 

Service advertisement 

Information service is used by infrastructure providers to 
advertise the ISONI capabilities with the purpose to select 
(suggest) the appropriate candidates for deploying the 
applications (based on the capabilities, price, …). 

Naming scheme for service 
(instances) 

For external clients naming is subject to the rules defined by 
Web Services.  

Addressing scheme for service 
instances 

Within a VSN, each service component is assigned virtual 
address (from a private VSN address space); this service 
component can have multiple instances and each instance is 
assigned a pool element address (from private VSN address 
space); moreover, each service component is assigned a physical 
address that is bound to the physical host on which the 
corresponding VM runs. 

Service discovery and resolution 

− Discovery service provided as by ISONI (IaaS) is responsible 
for finding registered candidate ISONI providers that meet 
the low level QoS constraints defined in the technical SLA. It 
applies the rules based on the advertised capabilities of the 
ISONI providers and the QoS types that are supported. 

− External clients interface IRMOS through IRMOS Gateway so 
they use Web Service-based mechanisms. 

Service binding 
Accomplished by the SLA Management Component at the 
IRMOS (PaaS) level. 

Routing table population 

ISONI eXchange Box (IXB) layer is responsible for routing on the 
transport layer. On the other hand, service routing capability not 
defined explicitly; its role is embedded in the SLA Management 
Component.  

Routing policy IRMOS/ISONI Provider dependent. 

Table 2: IRMOS/ISONI and FUSION 

3.2.2 IMS/SIP-based architectures 

IMS [CMA07] is a service control overlay based on SIP designed by 3GPP and ETSI for controlling 
session-based services in 3GPP and converged NGN networks. Apart from session-oriented services it 
also supports other functions as, e.g., simple subscribe/notify service, and instant messaging and 
presence based on SIP.  

Out-of-band service routing plane based on SIP can access the SPD FE (Service Policy Decision) that 
derives and translates service requirements and negotiates network-level QoS. Essentially, physical 
transport of user data is separate from request routing, and transport control capabilities are located 
in network domain visited by the client. 

In IMS, the S-CSCF (Serving Call-Session Control Function) function in home domain able to reroute 
SIP initial requests towards application servers in order to trigger services; this re-routing is done 
based on Initial Filtering Criteria (IFC) downloaded by S-CSCF from HSS on user’s registration. An IFC 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 20 of 53

 

Copyright © FUSION Consortium, December 20 2013 

is a logical expression matching a message to bind triggers with application servers and from FUSION 
perspective can be seen as a simple service graph (or even a service chain). 

 

Integration with IP 

IP overlay. IMS provides a framework for control and delivery of 
session-based services over diverse IP-based networks with QoS 
support by the underlying networks, enhanced with simple 
composition of component services that can be plugged into the 
service through rerouting the signalling messages. 

Authentication and security 
In the application server context, each client can be 
authenticated using different methods like, e.g., Digest 
authentication or trusted host authentication.  

Service advertisement 
Could be based on IMS presence service model based on SIP 
presence.  

Naming scheme for service 
(instances) 

Public Service Identities, typically in the form of SIP URI, in order 
to identify services hosted on application servers. 

Addressing scheme for service 
instances 

Name to IP mapping is performed by querying the Service 
Registry, often DNS-like in practice. 

Service discovery and resolution 
Could be based on IMS presence service model based on SIP 
presence. 

Service binding 

A service request in the form of SIP message is routed through a 
chain of IMS-defined SIP proxies. In particular, S-CSCF may 
contact databases and use application servers to reroute initial 
requests to appropriate services. 

Routing table population 

A the level of IMS proxies (CSCFs), routing is partially defined by 
a fixed chain of CSCFs involved in routing SIP messages. Next-
hop_name-to-address resolution for initial requests is made 
using DNS. Similar mechanism applies to application servers; 
application servers can additionally change routing on-the-fly by 
modifying the Route header in SIP request messages (underlying 
mechanisms, APIs, and policies etc. are application-server 
specific). 

Routing policy 
Load balancing among application servers at S-CSCF level is not 
fully addressed in IMS. Few propositions rely on the use of DNS, 
but such capability seems in general to be vendor-specific. 

Table 3: IMS and FUSION 

Suitability for FUSION: it seems that NGSON is an approach to service-oriented networks that 
generalises IMS concepts. 

3.2.3 NGSON: Next Generation Service Oriented Network 

NGSON [NGSON11] was proposed by the IEEE, and is designed as an overlay framework for control 
and delivery of composite services over heterogeneous IP-based networks. In NGSON, service 
configurations can be customized and adapted to the dynamic context of users, devices, services and 
networks. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 21 of 53

 

Copyright © FUSION Consortium, December 20 2013 

NGSON specifies a functional architecture that provides advanced service and transport-related 
functions to support context-aware, dynamically adaptive, and self-organizing networks. To this end 
it defines functional entities and abstract protocol mechanisms, but does not provide their efficient 
implementation. These functions are realised by strategically located nodes with service-specific 
forwarding and control capabilities. According to NGSON, the general organisation of “the network” 
follows the split into the signaling/control plane (to achieve service awareness) and transport plane. 
NGSON is declared to target current transport networks (IP, and also other technologies), and also 
cloud networks (in the sense that the services supported by NGSON may run in clouds, and also the 
functions of NGSON platform can be run as cloud applications, e.g., for auto-scaling purposes).  

 

Integration with IP 

IP overlay. NGSON provides a framework for control and 
delivery of composite or component services over diverse IP-
based networks (e.g. legacy IP, P2P, IP Multimedia Subsystem), 
possibly with QoS support by the underlying networks. 

Authentication and security 

Carried out by the Identity Management (IDM) functional entity. 
The authentication and authorization is categorized into two 
levels, user level and service level. User level identity 
management deals with determining the identity of the user and 
the appropriate agreements to use a service. Service level 
identity management deals with determining the identity of the 
service and the appropriate agreements to use other services in 
NGSON. NGSON uses the global ID for an end user to sign in to 
multiple services, without needing to create service specific IDs 
and passwords (Single Sign-On).  

Service advertisement 

Provided by the Service Register functional entity. It assists 
Service Routers to discover where and how to route a service 
request. It maintains current location information of the 
services. 

Naming scheme for service 
(instances) 

Global and local IDs. Global IDs uniquely represent a user, 
independent of service providers or services. Local IDs are 
identities that uniquely represent a user in a specific service or 
service provider. Mapping is performed by the IDM. 

Addressing scheme for service 
instances 

Name to IP mapping is performed by quering the Service 
Registry function. 

Service discovery and resolution 

Service Discovery and Negotiation is typically used when 
abstract service is specified in the request. The service requestor 
may provide a number of criteria, such as service interface, 
availability, QoS, SLA, version, network area, regional area. The 
Service Discovery and Negotiation function obtains a list of 
similar or relative services (instances) and returns it to the 
requester. In a second phase, Service Routing will contact the 
Service Register functional entity for name-to-address mapping. 

Service binding 

A service request is sent to a service router. Service router may 
query the Service Registry and/or Context Information 
Management function in order to get additional information 
about the requested service that is needed to route towards the 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 22 of 53

 

Copyright © FUSION Consortium, December 20 2013 

service. Alternatively, the request can be routed to Service 
Discovery and Negotiation function element that selects the 
best service. Setting up the policies for the use of either of these 
binding mechanisms is out of scope of NGSON specification. 

Service routing 

Responsible for routing of service requests received from an 
end-user or a service to an appropriate service instance along 
the overlay network. A service request contains the functional 
requirements of the target service and input data to be 
delivered to the target service for interactions. The target 
service can be specified with either functional description (i.e., 
service type) of the expected service or a concrete service 
instance. If only the abstract service type is given in the service 
request, the service discovery and negotiation function selects 
the best candidate service instance instead. Thus, the service 
routing function binds and invokes the target service instance to 
forward the service request. A response to the request from the 
target service is forwarded back to the service requestor by the 
service routing function. Plays a key role in conveying service 
requests and responses among functional elements (e.g. Service 
Discovery and Negotiation function, Service Composition 
function), and contacting other supporting functions during this 
process (e.g. Service Policy Decision). 

Routing table population Not addressed. 

Routing policy 

Addressed partially. For example, the SDN functional entity may 
filter several candidate service instances by different criteria, 
such as availability or cost, which may vary with the context. The 
context is obtained by processing and aggregating the raw 
context information collected from different context sources, 
such as underlying user profile services, underlying networks, 
and terminal devices. Moreover, Service Routing is allowed to 
send requests to one or multiple destinations to select the best 
instance of the requested service. 

Table 4: NGSON and FUSION 

Suitability for FUSION: NGSON identifies several individual architectural components and 
functionalities that are relevant for FUSION. As of today, only the functional architecture of NGSON 
has been standardized, but no interface specifications are available. Thus, an overall suggestion is 
that NGSON can serve as a blueprint for FUSION in several aspects as explained in the following. 
Service communication model: NGSON tries to integrate session-based (conversational) services (i.e., 
those that transfer their service data using dedicated sessions/connections rather that NGSON-level 
signalling) and transactional (non-session) services (i.e., those that transfer service data by 
piggybacking them in NGSON signalling). FUSION does not assume explicitly that services can 
exchange their data using service routing signalling. Thus, from the point of view of the role of 
signalling, FUSION could build on NGSON as it potentially requires a subset of NGSON capabilities. 
Resource management: FUSION explicitly targets management of cloud-based resources by 
addressing service placement problems; NGSON only maps service requests to the best running 
service instance (through Service Routing function that uses Service Discovery & Negotiation function 
and Service Policy Decision function). Thus, FUSION could NGSON by considering also service 
placement (this function, attributed to the orchestrator in FUSION, could correspond to a new block 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 23 of 53

 

Copyright © FUSION Consortium, December 20 2013 

in NGSON). Regarding network resources, NGSON adopts a classical bandwidth-broker approach to 
network resource and QoS control (through Service Policy Decision fed by the service routing). 
Obviously, this approach can in theory be adopted by FUSION, but its tight integration with the 
management of cloud-based resources (computation, storage) may rise strong scalability concerns.  

3.2.4 CCN (Content-Centric Network) 

CCN architecture (a.k.a. NDN – Named Data Networking) has been proposed under the heading of 
Information-Centric Networks as a clean-slate solution for the future Internet [JSTP09], [NDN]. CCN 
defines a forwarding plane of a transport network that operates based on the route-by-name 
principle assuming hierarchical names of content objects. According to CCN, content objects (data 
chunks of named content) are delivered in response to requests specifying the name of the 
requested object. Data chunks follow the reverse path of corresponding requests and can be cached 
in the intermediate nodes for future reuse. Thus, CCN as such defines a thin transport plane while all 
required control/management functionalities are missing from the original proposition (in particular 
routing and higher level functions such as, e.g., publish-subscribe). The work on these (and other) 
topics in the context of CCN has been undertaken in several works, e.g. [HAAW13], [CAJF11]. 

 

Integration with IP 
Clean slate, although CCN “faces” can run on top of different 
layers including IP. 

Authentication and security 
Name-data binding authenticated by the signature of data 
object owner (the use of private/public is assumed).  

Service advertisement 
Could be built using routing capabilities of CCN (however, 
routing is still an open issue in CCN, although several 
propositions have been proposed). 

Naming scheme for service 
(instances) 

Hierarchical names with textual syntax and conventions as to 
naming consecutive chunks of a given object (including streams). 

Addressing scheme for service 
instances 

To be developed, preferably based on CCN naming scheme.. 

Service discovery and resolution 
Discovery not addressed explicitly. Resolution at low level done 
by forwarding Interest packets (requests) according to the 
forwarding rules.  

Service binding 
Not addressed explicitly. Preferably should be built into Interest 
forwarding. 

Routing table population 

Done by routing protocols; application of IGP/EGP protocols has 
been proposed, but also other schemes are considered by 
different researchers including interfacing with external 
controllers. 

Routing policy 

Dependent on the setting of routing protocols and other 
mechanisms including local rules implied by the “strategy layer” 
(although the latter does not seem to have been studied 
extensively). The style could be similar to that known from IP 
networks, but additional concerns known from e.g. CDN 
interworking, may be superposed. 

Table 5: CCN and FUSION 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 24 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Suitability for FUSION: Has some potential, but more insight is needed into different scenarios of 
using CCN in cloud environments. We notice that CCN, and the ICN principle in general, assumes the 
knowledge of names of content at the level of network infrastructure. As content retrieval can easily 
be generalised to accessing services “by name” we expect ICN to be a potential candidate solution 
for FUSION. Early attempts to such generalisations have already been proposed an thus can be a 
starting point for a future study. 

3.2.5 NetInf 

NetInf [SAIL13] has been developed by FP7 SAIL project as a proposition for future Internet ICN. 
NetInf layer defines NetInf protocol for named data object publishing, searching and retrieval along 
with name-based routing and name resolution services. Corvengence layer allows Netif to run on top 
of any transport, e.g., HTTP/TCP, IP, UDP, Ethernet. NetInf defines a new URI scheme (“ni” URI) for 
naming NetInf data objects to accommodate name hierarchies. 

 

Integration with IP 

IP overlay in the sense that can run on legacy IP networks, and 
that data transfer can be over TCP/IP stack. Clean slate in the 
sense that NetInf protocol can run without IP support. In the 
latter case NetInf data transfer resembles CCN, although reverse 
path is maintained by using label stack header (similar to Via 
header in SIP or HTTP).  

Authentication and security 
Authenticating name-data integrity by the inclusion of hashes in 
“ni” URI. 

Service execution Outside the scope of NetInf. 

Service advertisement 
PUBLISH method is used for publishing data objects including 
objects themselves and their metadata. Details depend on the 
policies of the Name Resolution Service. 

Naming scheme for service 
(instances) 

“ni” URI with hierarchical authority part (for routing/aggregation 
purposes) and named object identifier (used for name matching) 

Addressing scheme for service 
instances 

Would have to be based on “ni” URI. 

Service discovery and resolution 

Using SEARCH method of NetInf. Name resolution achieved 
either by means of request forwarding (like HTTP proxy) or by 
Name Resolution Service. NRS is based on Multilevel DHT, and 
can respond with either routing hints to be used for request 
forwarding purposes or locators used to access data objects 
directly through underlying transport network.  

Service binding Adopting GET method. 

Routing table population Using IGP/EGP protocols suggested as a possible option.  

Routing policy Domain-depedent for request (GET) forwarding. 

Table 6: NetInf and FUSION 

Suitability for FUSION: Has some potential, but more insight is needed into different scenarios of 
using NetInf in cloud environments. According to the ICN paradigm, NetInf assumes the knowledge 
of names of content at the level of network infrastructure which is key to recognising “services” at 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 25 of 53

 

Copyright © FUSION Consortium, December 20 2013 

network level. Interestingly, in the SAIL project cloud computing has been extensively studied and 
the potential role for NetInf mentioned therein (apart from running NetInf functions ono clouds) is 
the access to cloud services that use NetInf naming. Handling metadata directly by the NetInf layer 
seems to be an enabler to directly support such a scenario by NetInf. 

3.2.6 PSIRP/PURSUIT 

PSIRP/PURSUIT architecture [PSIRP10] introduces an ICN-like architecture that is based on a publish-
subscribe forwarding paradigm where DHT-based Pub/Sub rendezvous function (subsystem) allows 
for matching publications with subscriptions, topology management and formation function serves 
the routing purposes to provide delivery information to the forwarding function (as labels 
representing source-routed paths in the form of Bloom filters), and the forwarding function provides 
the relaying capabilities (including QoS mechanisms) for packets using the source-routed labels 
provided by topology management function. 

 

Integration with IP 

Clean slate. Pub/Sub model assumed for data registration and 
search capabilities at the Rendezvous layer, and source routing 
based on Bloom filters is used in the data plane. Source routes 
are delivered by a separate Topology management and 
formation layer. 

Authentication and security 

The Pub/Sub component can provide advanced capabilities 
while serving publications of and subscriptions to 
context/services. The forwarding plane (based on Bloom filters 
to specify source-routed packets) provides some level of 
protection against unwanted traffic.  

Service advertisement 

Could be built adopting the capabilities of the Rendezvous 
function. PURSUIT claims to support mobility, so Rendezvous 
potentially offers a good platform to support dynamic service 
instantiation. 

Naming scheme for service 
(instances) 

PURSUIT labels (flat names) organised into scopes at the 
Rendezvous. The applicability of scoping to support service-
oriented functions needs further study. 

Addressing scheme for service 
instances 

Probably could be based on PURSUIT labels (flat names) of the 
Rendezvous function. 

Service discovery and resolution 
PURSUIT Rendezvous function should preferably be used for this 
purpose. The use of scoping may assist in creating various 
policies in accessing the services. 

Service binding 
Rendezvous and topology management and formation should be 
able to support this function (binding to forwarding labels in the 
form of Bloom filters). 

Routing table population 
For transport layer, Topology management and formation 
function is responsible for this function. Routing (i.e., searching) 
at the Rendezvous layer is based on the DHT principles. 

Routing policy 
For the transport layer. SLA and QoS requirements may be taken 
into account by Topology management and formation layer. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 26 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Table 7: PSIRP/PURSUIT and FUSION 

Suitability for FUSION: PURSUIT/PSIRP assumes the knowledge of names of content at the level of 
network infrastructure. Its Pub/Sub function handles metadata to provide rich service registration 
and discovery capabilities, and in combination with the topology function it can enable efficient 
service binding. The architecture has potential to be adopted by FUSION, but similarly to NetInf, a 
deeper analysis of different scenarios of its use in cloud environments is needed. 

3.2.7 SERVAL 

Serval [NDGK12] is a new modification to the internet architecture where service access is central. 
Serval allows users to find a service instance based on several metrics such as load and latency, and 
maintain a connection with that service instance. It is designed by Princeton University and source 
code is available since 2012. Two demos are available: the first one is the website of Serval, where 
each request is load-balanced between two Serval enabled servers. The second demo is a mobile 
user listening to a music stream while demonstrating how Serval is able to migrate an active 
connection when a more appropriate connectivity is found (e.g. use Wi-Fi over cellular data when 
available to reduce cost). 

Serval introduces a service oriented layer (named SAL – Service Access Layer) located between the 
transport and the network layers. Its main role is to enable applications to communicate using 
service names. More specifically, Serval allows request packets to be forwarded by specialised Serval 
nodes to the targeted instance of service; both responses to confirm the connection and subsequent 
traffic are sent only through the IP layer thus bypassing the SAL layer (Serval nodes). So, the main 
role of request packet is only to trigger connection setup between the requestor and appropriate 
service instance. For this purpose, and in addition to normal IP addresses and application-level data, 
a request packet contains new elements defined by Serval (serviceID) that are used by the SAL layer. 

In Serval, a separate service controller layer is responsible for appropriate configuration of service 
forwarding tables at the SAL layer. Thus, its functionalities are related to those of the service 
orchestrator in FUSION. However, the architecture for interworking between FUSION and Serval is an 
open topic. 

One feature of Serval particularly relevant to FUSION is that setting appropriate rules for handling 
requests at the SAL level enables notifying the service controller of service registering/deregistering 
which in turn can update service resolution database (and service forwarding tables where 
appropriate). A useful capability is that forwarding of service request can be queued and delayed be 
a service router in order to notify the service controller and wait until it responds, thus allowing, e.g., 
to install service forwarding (resolution) rules in real time (on-demand). 

Serval may by definition be used to allow communication using service names controlles by a service-
aware control plane (missing from Serval itself) that supports such functions relevant for FUSION as 
service routing and resolution. 

 

Integration with IP 

IP overlay. Serval adds a Service Access Layer that sits between 
the transport and network layers. The SAL maps service names 
to IP addresses before connections are made. Once a connection 
is established, communication is based on standard IP. 

Authentication and security 
Serval uses random nonces to protect users from off-path 
attacks. Further security is not handled by Serval. 

Service advertisement An application calls bind() on a Serval socket API and registers a 
local forwarding entry. Local service controller can propagate 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 27 of 53

 

Copyright © FUSION Consortium, December 20 2013 

this local announcement to upstream service controllers. 

Naming scheme for service 
(instances) 

Services are identified by service name. 

Addressing scheme for service 
instances 

A connection with a service instance is identified by a service 
name combined with a flow ID. 

Service discovery and resolution 
SAL present on each Serval enabled host/router translates 
service names to network addresses. 

Service binding 

When a user calls connect() or send() on application level, the 
client’s SAL assigns a local flowID and adds a forwarding rule. A 
SYN packet is created, along with the local flowID and the 
service name. Each intermediate SAL will apply a forwarding rule 
until a service host is reached. The service host creates its own 
flow ID and replies with a SYN-ACK along with its own address 
and flow ID. All following communication uses the end-point 
addresses and bypasses the SAL. 

Routing table population Not mentioned. 

Routing policy 

Each SAL can take a set of pre-defined actions associated with a 
forwarding entry. This action is set by the local service 
controller, SAL only follows the active forwarding entries using 
longest prefix matching. 

Table 8: SERVAL and FUSION 

Suitability for FUSION: Serval has similar goals as FUSION (e.g. focusing on service access through 
name based requests). One of the important questions in FUSION is how we will establish a long-
lived connection with a service instance. Serval’s approach is a possible solution to this problem. Also 
having a service layer below the transport layer could increase performance compared to an overlay 
approach.  

3.2.8 eXpressive Internet Architecture (XIA) 

XIA [HADL12] is the result of collaboration between Boston University, Carnegie Mellon University 
and the University of Wisconsin/Madison. XIA recognizes the shift from IP-based Internet to new 
architectures focusing on different principals, such as content or users. XIA describes an architecture 
designed to support different principals and allows new principals to be added over time. It also 
allows incremental deployment due to a fallback mechanism for routers which don’t support XIA. 

 

Integration with IP 
Both. XIA addressing uses clean slate service ID addressing 
schemes, but it allows for intermediate routers to fall back to IP 
based addressing if XIA is not supported. 

Authentication and security 

XIA identifiers are intrinsically secure: e.g. cryptographically 
derived from the 2 associated communicating entities in a 
principal type specific fashion [HADL12]. IDs are generated by 
hashing the public key of the destination entity. 

Service advertisement Services use a XIA socket API: a service calls bind() to bind itself 
to the public key of that service. This bind inserts the service ID 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 28 of 53

 

Copyright © FUSION Consortium, December 20 2013 

in the host’s forwarding table. Available services are propagated, 
following a given scope. Propagating this information is future 
research. 

Naming scheme for service 
(instances) 

XIA uses a restricted directed acyclic graph (DAG) representation 
of XIDs to specify XIP addresses. XIDs (principal identifiers) are 
retrieved by hashing the public key associated with that 
principal. These XIDs are unique for each principal instance. 

Addressing scheme for service 
instances 

There is no specific instance addressing. All identifiers are based 
on the public key of the service, and key pairs can be shared 
amongst trusted instances.  

Service discovery and resolution 
When a client wants to connect to the service, it first contacts 
the name resolution service to obtain the service address. 

Service binding 

The client initiates a connection by sending a packet destined to 
the service ID using the socket API. The source address specifies 
the client AS, Host ID and client service ID. This packet is routed 
to the destination AS and then to an instance of the service. 
After the initial exchange, both processes will establish a 
session, which includes, for example, establishing a symmetric 
key derived from their public/private key pairs. 

Routing table population Not mentioned. 

Routing policy 

XIA addresses contain several identifiers, such as AS, Host ID and 
service ID. A router starts at the service ID and falls back to the 
host address or AS address respectively if it does not support 
XIA. The next hop address is the furthest known node along the 
path.  

Table 9: XIA and FUSION 

Suitability for FUSION: XIA allows users to create new principals and specify how requests and data 
for that principal should be handled. In FUSION a similar approach can be used to support different 
policies for different types of services. The addressing scheme used in XIA might be useful for an 
incremental FUSION deployment on top of the IP infrastructure. 

3.2.9 Summary: Models for Name Resolution and Network Control 

In this section we summarise the discussion given in previous subsections by presenting a high-level 
overview of the way selected state-of-the-art architectures enable networks to be service aware. 

 Network resolution and network control models corresponding to the architectures selected in 
previous are presented in Figure 1. The figure has been drawn to expose the separation of transport 
functionalities from the control ones. Also, subtleties related to the directionality of data streams are 
shown. To this end, the data flows between service components (or users) are always annotated as 
red/blue bars on appropriate level. For example, in the case of IMS/NGSON two bars are used at the 
service session level to show in a symbolic way the allowance for multiple uni- and bidirectional 
streams that are coordinated within a single signalling “dialog” as one compound data session; in the 
case of Serval, the two bars correspond to two unidirectional flows that can be set up as a result of a 
single request (like two flows in a TCP connection). In contrast to the above, in the CCN case data 
flows (the chunks transferred in response to requests for consecutive pieces of a larger object) are 
always unidirectional because of the simple request-response network communication model in 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 29 of 53

 

Copyright © FUSION Consortium, December 20 2013 

CCN. In the case of IRMOS, the flow is marked as unidirectional, although ISONI may have capabilities 
to control also bi-directional connections (it uses ITUT G.805 network resource model for the 
transport network).  

Another important aspect exposed in the figure is the way service-level control information is 
conveyed and seen by the network to support service resolution (and also network resource control). 
I the case of IRMOS, ISONI plays the role of a (logically) centralised controller responsible for 
reservation and interconnecting all resources (computation, network) based on service descriptions 
(in the form of virtual service networks in the IRMOS terminology). In IMS/NGSON, it is the role of 
out-of-band signalling to provide basic information on the service requested during the resolution 
process. Thus, there is a possibility for services to annotate their requirements themselves – using 
signalling; from the FUSION perspective this would mean that some information about the service 
that in IRMOS can only be described statically in the form of a service graph, now can be created and 
announced dynamically using signalling. Notice that this applies to Serval only partially, because 
currently Serval does not allow for rich negotiations like in SIP using SDP, and also due to its 
positioning in the OSI stack which is different than that of SIP. While SIP (and also Serval in the 
request/SYN phase) is out-of-band- and out-of-path signalling, CCN uses in-path signalling because 
requests and data packets follow the same route (in the opposite directions). This in-path signalling 
capability combined with service-name awareness (due to name-based routing) could be used by the 
forwarding nodes to monitor and/or control, e.g., quality of service, but respective policies would 
have to be set up and executed by some service control function which is not defined in CCN 
explicitly. 

 

Figure 1: Models for name resolution and network control in selected architectures. 

Analysing the models presented one can conclude that appropriate combination of those 
corresponding to IRMOS and IMS/NGSON (SIP/HTTP) seems to be a suitable starting point for 
subsequent FUSION developments. In particular, IRMOS provides overall coordination of computing 
and network resources based on explicit description of complex services (service graph/manifest in 
the form of VSN). At the same time, deriving information about services from signalling (mainly 

Invite+ SDP Invite + SDP

Service

NGSON level

session

OKIMS: SIP proxy
~ service router per-session control

IMS/NGSON

Interest Interest

Data

CCN node
~ service router

Service control

CCN

SALSYN SYN

Service control

SYN-ACK, 
service router

Serval

per-VPath control

Service graph
statically-defined

rules (description)

IRMOS

ISONI

NGSON overlay

Service

ISONI coordinates services and the network

IaaS-like
control

IaaS-like
control

ServiceService Service
(session level)

Service
(session level)

Service

Serval level
Serval

CCN

SIP

Service

SIP/NGSON
level

Invite+ SDP Invite + SDP

Service

NGSON level

session

OKIMS: SIP proxy
~ service router per-session control

IMS/NGSON

Interest Interest

Data

CCN node
~ service router

Service control

CCN

SALSYN SYN

Service control

SYN-ACK, 
service router

Serval

per-VPath control

Service graph
statically-defined

rules (description)

IRMOS

ISONI

NGSON overlay

Service

ISONI coordinates services and the network

IaaS-like
control

IaaS-like
control

ServiceService Service
(session level)

Service
(session level)

Service

Serval level
Serval

CCN

SIP

Service

SIP/NGSON
level



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 30 of 53

 

Copyright © FUSION Consortium, December 20 2013 

during the resolution phase, easily achievable with SIP/HTTP) seems to be best suited for the case of 
highly distributed resources that FUSION makes case for. 

 

3.3 Service Routing Node Design and Operations  

The Service Routing layer enables the discovery and selection of an instance of a particular service. 
The selection process may be based on application-specific and/or network metrics.  

The network layer transports service requests, monitoring information and routing table updates. To 
ensure the evolvability of the proposed solution, the FUSION network layer is conceived as an 
overlay of today’s IP stratum. A high-level view showing the main functionality of the FUSION 
network is shown in Figure 2. 

 

 

Figure 2: Service components running on clients and in execution zones are interconnected 

through the FUSION network as overlay of today’s IP stratum. 

The main component of the Service Routing Layer is the Service Router, responsible for the instance 
selection of name-based service requests by service components. The zone gateway is the entry 
point for zones, but basically performs the same operations as the other service routers. 

The goal of this section is to consider the design of the service routers, and to demonstrate their 
mutual interworking, as well as their interfaces with other components to realize the functionality of 
a service-oriented network layer. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 31 of 53

 

Copyright © FUSION Consortium, December 20 2013 

3.3.1 Service router 

The functional blocks of the FUSION Service Router are illustrated in Figure 3. 

 

Figure 3: functional blocks and interfaces of the service router 

Incoming service requests are processed by looking up the requested service name in the Service 
Registry. This table maps service names to specific actions. If an entry is found in the Service Registry, 
the request will be directly forwarded to one or multiple outgoing interfaces. 

If the service name is not found in the Service Registry, the request is escalated outside of the fast-
forwarding path of the router to the ad-hoc selection component. This component may query 
external components, such as the name resolution service before determining the outgoing 
interface. More details on retrieving routing hints are provided in section 3.3.4. 

The Service Registry is being updated by the routing component. Routing paths are calculated based 
on information retrieved from other routers via the service advertisement interface, or from the 
Orchestration Layer. Moreover, monitoring information can be taken into account for dynamic 
updating of the routing entries in the Service Registry. The routing component thus plays an 
important role in the overall optimisation of the service instance selection process in the FUSION 
architecture. 

3.3.2 Zone gateway 

The zone gateway abstracts the proprietary management policies of the Execution Zone from the 
FUSION service routing layer. Its main functionalities are instance selection and service 
advertisement. The minimal set of components and interfaces of the zone gateway is shown in 
Figure 4. It contains a routing component that is responsible for advertising services hosted by the 
zone. Such advertisements are issued based on the information provided by the proprietary Zone 
Manager. The functionality of the Zone Manager is further described in D3.1  

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 32 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

Figure 4: functional blocks and interfaces of the zone gateway 

Whereas the ‘core’ service routers select the optimal zone for serving a particular service request, 
the zone gateway will map incoming requests to actual instances. Several scenarios can be identified: 

• At least one instance of the requested service is already running. The zone gateway performs 
internal load-balancing without exposing the actual number of instances running in the 
Execution Zone to the FUSION service routing layer. The owner of the zone could apply any 
proprietary load-balancing policy. 

• No instance of the requested service is running. The gateway temporarily stalls the requests 
and asks the Zone Manager to instantiate a new instance, before forwarding the request. 

• For stateful services with data forwarding handled by the FUSION service routing overlay 
(instead of IP), the service identifier in the request will indicate the instance to forward the 
request to. 

The zone gateway will also advertise the available services. Without exposing too much internal 
details, the zone gateway will provide information about: 

• The services offered in the zone. Note that the announcement of an available service does 
not imply that an instance of that service is actually running. It merely indicates the 
availability of resources to host an instance. 

• The number of session slots. Session slots are introduced in D3.1 as an abstraction of per-
service resource availability. 

3.3.3 Service instance selection 

The process of service instance selection involves the translation of a location-independent service 
name into the locator (or sometimes into the identifier) of an actual instance of the requested 
service. The selection process is gradually carried out by name-based forwarding of service requests 
between FUSION network routers, as illustrated in Figure 5. 

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 33 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

Figure 5: Forwarding of service requests by FUSION routers. 

As explained in section 0, the actual selection between the many candidate instances of a particular 
service may be carried out by the requesting service, or by the FUSION network. The network-driven 
approach was already illustrated in Figure 5: the network autonomously decides to which instance a 
service request is routed. 

In the client-driven approach, the FUSION network is only queried about available instances. Routers 
forward the discovery request to one or more outgoing interfaces, and/or respond themselves with a 
list of known instances found in their service registry. Zone gateways advertising the requested 
service may also respond to the request. This approach is illustrated in Figure 6. 

 

 

Figure 6: Client-driven selection 

The requesting service will construct a list from all responses received during a client-specific waiting 
period. Although in Figure 6 only IPv6 addresses are returned, several types of identifiers and 
locators can be returned: 

• service instance identifiers (FUSION namespace) 

• service instance locators (IPv6) 

• zone identifiers: zone gateways may respond with their locator, deferring the load balancing 
until the actual request arrives 

The requesting service will eventually connect to one instance from the list. Session management is 
discussed in section 3.3.6. 

3.3.4 Service request forwarding operations 

The service registry of each service router will contain per service name the IPv6 address of the next 
node involved in the selection process: the next FUSION router, or the address of a zone gateway. 
How this forwarding table is populated will be discussed in section 3.3.5. 

Name-based routing is only one mechanism to aggregate and cache the information of service 
availability across execution zones. If no entry is found, the selection decision is escalated outside the 
fast-forward path to perform ad-hoc resolution. Requests will be temporarily stalled, and the ad-hoc 
selection component may query external components for routing hints, as shown in Figure 7. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 34 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

 

Figure 7: FUSION routers and zone gateways may query external components for routing hints. 

External components delivering routing hints may be a name resolution service, or the FUSION 
Orchestration Layer. Name resolution service may provide routing hints like the locators of next 
service routers to forward the request, or even the actual locator of the instance to be selected. Zone 
gateways receiving a service request may escalate the instance selection logic to the load balancer of 
the zone, or to the zone orchestration layer. If needed, the orchestration can first instantiate a 
request and subsequently send the instance address as routing hint back to the zone gateway. 

The service routing plane forwards and resolves service requests to a particular zone that announces 
the requested service. The intra-zone selection mechanism is proprietary and left to the Zone Owner. 
The concept of late-binding is hence a two-stage process: the network first selects the most 
appropriate zone, and the zones will internally load-balance the request to one of the instances. 

3.3.5 Service Announcement and Routing  

To populate the service registry, service routers need to be provided with information about service 
availability per zone. For this reason, each zone will advertise services to the routing domain it is 
attached to. This information may be aggregated and forwarded between all routers of the same 
domain.  

If a user requests a service that is not being advertised by one of the zones of its routing domain, the 
request must be routed to other routing domains. Routing domains will peer through their border 
routers that run a standardized inter-domain routing protocol, akin to BGP. 

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 35 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

Figure 8: Service availability is exchanged between domains, enabling cross-domain forwarding of 

service requests. 

Figure 8 shows a sample scenario, where a few routing domains are globally interconnected via a 
(currently undefined) FUSION exterior gateway protocol. Each domain announces its services to 
other domains. Business rules may prohibit the announcement of hosted services to other domains, 
for geographical reasons or to shape incoming traffic requests. As an example: Netflix may not be 
reachable from other countries. 

3.3.6 Session set-up 

After service instance discovery and selection, the service components will establish an application 
session. This application session may be routed through the Service Routers or natively in the IP 
layer. In any case, service components must be able to add service-specific information to the 
discovery request that is sent on the network.  

3.3.7 Monitoring 

Service routing decisions may in general depend on two types of monitoring information, namely the 
information about the transport network and the information about service instances. 

In fact, the types and the amount of information about the network gathered by the monitoring 
component can depend on the algorithms used in a particular implementation of the FUSION 
architecture. Typical parameters will probably include bandwidth and latency. But the best practices 
that suggest the options particularly suitable for FUSION may only be created over time. At the 
current stage of the project it is thus sufficient to assume that monitoring of the transport network 
for the needs of service routing will be accomplished in accordance with known frameworks and 
using available network monitoring tools.  

Apart from network parameters like bandwidth and latency, the most important metric related to 
services is the availability of and the load on the instances. However, this information might not be 
available in all parts of the network (e.g. because of administrative boundaries).  

The return path of the answer by queried service instances could differ from the original request 
path. When forwarding a service request, service routers could add their own address to the request 
header, indicating that the answer should be routed back via these routers. This information could 
provide valuable additional input to service routers about the decision policies in other parts of the 
network. 

Based on the above one can see that monitoring service level parameters for the needs of service 
routing can in theory be accomplished in three basic ways: by piggybacking this information in 
signalling messages (responses to service requests), or piggybacking it in service routing protocol 
announcements, or using a dedicated protocol for service monitoring at the service routing layer. We 
believe that additional studies and practical experience are needed to decide on the suitability of 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 36 of 53

 

Copyright © FUSION Consortium, December 20 2013 

these forms for FUSION. In the current stage of the project it is thus sufficient to assume the 
existence of an abstract monitoring interface that allows the exchange of required service 
monitoring information for the purposes of service routing. 

4. INTERFACE AND PROTOCOL SPECIFICATION  

Based on the above discussion, the following interfaces can be identified: 

• service query and invocation interface: to discover and possibly select service instances 

• service announcement interface: to announce service availability 

• routing hint interface: to ask non-service routers for routing hints 

• monitoring interface 
 

The specifications below should be seen as a first version. In the second year of the FUSION project, 
we will study and refine these interfaces. 

4.1 Service query and invocation interface 

This interface is used by service instances (running in zones or on client devices) to query the Service 
Routers for suitable instances of the requested service. A similar interface is needed between routing 
domains for multi-domain service invocation. 

 

Figure 9: query and service invocation interface 

The protocol used for service query and invocation must support the following operations: 

• discovery of instances by name 

• selection of instance by name 

• parameterization of requests, adding additional constraints for discovery or selection 

For this interface, we propose a protocol that is akin to HTTP, with several mandatory header fields. 

QUERY message: allows a service to query for a list of service instances available in the network, or 
to ask the network to select one instance.  

 

 

 

 

 

 

• URI: the identifier of the requested service, following the naming scheme specified in 
section 4.2. 

• query-id: randomly generated to match query-resp messages 

• notify-id: ID of the entity that wants to be notified of the response 

• filter: JSON-encoded string of additional arguments narrowing down the service selection, 
readable for all service routers 

• invoke: boolean; true if the network is allowed to select only one instance  

• [ext]: optional information 

QUERY URI 

query-id: [XXX] 

notify-id: [XXX] 

filter: [XXX] 

invoke: [bool] 

[ ext ] 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 37 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Note: Service routers may rewrite QUERY messages by adding a notify-id: header field to indicate 
that they want to be notified of the responses.  

Responses are returned via QUERY-RESP messages.  

 

 

 

 

 

• orig-query-id: matching the query-id from the initial query message 

• instances: the number of discovered service instances listed in this message 

• a list of instance-id’s 

Note: if additional notify-id: header was added to the QUERY message, these headers must be 
copied by the responding entity into the QUERY-RESP message. Service routers receiving the 

response must remove their notify-id entry from the message and forward to the next router in 
the Via: header. This may be the client itself. 

4.2 Naming 

At this stage, we propose to adopt the flat naming scheme that was initially developed by NetInf and 
is now in standards track as RFC 6920 [RFC6920].  

A generic URI example is provided below: 

ni://example.com/sha-256;f4OxZX_x_FO5LcGBSKHWXfwtSx-j1ncoSt3SABJtkGk 

The three main components of the URI are: 

• Authority (e.g. example.com) is an optional field. According to RFC 6920, it may assist 
applications in accessing the object. In the scope of FUSION, the Authority field could be 
used to indicate the developer of the service (e.g. spinor.com) 

• Digest algorithm: the name of the digest-algorithm, as specified in the IANA registry. 

• Digest Value: encoded using the base64url encoding 

Although the authority field is optional, it could be useful for FUSION in the following scenarios: 

• aggregation per service developer of routing hints or zone service availability advertisements 

• the authority field could help to identify the authority for name resolution of a particular 
service provider. The service provider could host its own resolution service and hence 
maintain full control over the resolution process.  

Optionally, the URI could be extended with query parameters as a “tag=value” list of optional query 
parameters, separated by a ‘&’ character. The drawback of this approach is (limited) extra processing 
in the service routers. 

FUSION will further study which is the best format to provide additional parameters to a service 
query: as URL parameters, or as an additional header field. 

4.3 Service announcement 

Zone gateways will inject service announcement messages into the service routing plane. These 
messages will contain information about the available services for which the zone is ready to serve 
requests. Additional attributes could be added per service. One notable example is the session slots 
indicating the relative load or resource usage of a particular service. 

QUERY-RESP URI 

orig-query-id: [XXX] 

notify-id: [XXX] 

instances: N 
N x instance-id 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 38 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

Header (type, length, CRC…) 

Zone ID 

Withdrawn Service #1 

… 

Withdrawn Service #N 

Service #1 + attributes 

… 

Service #M + attributes 

 

These messages will be flooded between all service routers of the same routing domain and will 
allow routers to update their Service Registry. In the above, we assume that each router has the 
routing information per Zone ID. This routing information could be constructed using (and extending) 
existing protocols such as OSPF. 

As explained in Figure 8, service announcements will have to be forwarded intra- and inter-domain. 
The study of the inter-domain service announcement has been scheduled in Year 2 of the project. 

4.4 Routing Hint Interface 

When no match is found in the Service Registry, Service Routers and Zone Gateways contact a 
Routing Hint Provider (RHP) for mappings from service identifiers to routing hints. Depending on the 
RHP contacted, the provided routing hints could either map to a locator or to an identifier of the next 
service router. 

Routing Hint Providers that translate service identifiers to locators could leverage the DNS, either by 
defining a new DNS record, or by using Service (SRV) records to link to a dedicated resolver 
[Ahlgren2013, SAIL13]. Also the load balancer in an Execution Zone could be seen as a Routing Hint 
Provider, selecting one instance per request. 

Routing Hints can also be used to compress forwarding tables [NARA12]. Topological (locator) 
routing hints are used as labels in routing, allowing to compress the routing tables topologically. 

4.5 Monitoring Interface 

In fact, the information (at least its semantics) about service instances and related resources 
conveyed within service routing layer through the monitoring interface can be similar to (or derived 
from) relevant information available through Amazon Cloud Watch API or OpenStack Ceilometer API. 
It can be assumed that this information can be exchanged using JSON format or XML, and the final 
decision which one to use will be taken in the next steps of the project along with other decisions 
concerning the development of the FUSION demonstrator. 

More details on the monitoring interface are provided in D3.1. 

5. NETWORK-DRIVEN SERVICE SELECTION  

In this section, we assume that the FUSION orchestration logic has already deployed service 
instances in a subset of execution zones. Service load is abstracted as the queue size, and could be 
seen as a first approximation of the session slot concept introduced in D3.1. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 39 of 53

 

Copyright © FUSION Consortium, December 20 2013 

The proposed algorithms are a first approach to optimal selection between zones and routing of 
service requests according to this selection strategy. We assume a large number of execution zones 
distributed in a single routing domain. The network-driven service selection algorithm maps user 
demand to a fixed set of service instances, taking into account both network latency and server 
queue size. The selection is then mapped to a multipath name-based routing protocol to perform 
load balancing at-runtime on service routers. Simulation results show that this approach results in 
lower average system response time perceived by the users in comparison to a greedy algorithm and 
fair share approach. 

5.1 QoS-aware service selection for low-latency applications 

We propose QuLa, a Service-Centric Networking (SCN) architecture which combines Information-
Centric Networking and Cloud Computing for large networks. Our goal is to provide more natural 
service access leveraging name-based routing. QuLa extends the ICN principles on named-data to a 
service-centric paradigm, combined with network-driven service management algorithms.  

Users request a service only by name and in-network load balancing techniques route requests 
towards the instance which gives the best QoS. Our research focuses on minimizing the total system 
response time, which is the sum of forwarding (network) latency, queuing delay at the service 
instance and the actual service processing time.  

We aggregate user demand at network edge nodes and seek an optimal distribution of the request 
load across the deployed instances. Service routers forward and load balance user demand over 
multiple service instances. Embedding the optimal load resolution to the forwarding tables of the 
service routers would require source-based routing. However, source-based routing excludes the 
possibility of routing table aggregation, making this approach practically infeasible. Therefore, we 
study the degradation in system response time when service routers only perform a statistical load-
balancing, not taking the source of the request into account. 

5.2 Related work 

QuLa is related to several areas of research as it addresses service selection, routing and both ICN 
and SCN. In this section we briefly discuss work relevant to QuLa for the different aspects of our 
architecture. 

Information-Centric Networking. ICN received a great amount of attention from various research 
groups. Some of the most significant contributions are made by CCN/NDN [NDN10], PSIRP/PURSUIT 
[FNTP12], DONA [KECK07] and NetInf [DKOF13]. Despite all focusing on content, they differ in design 
choices and resulting solutions. CCN, for example, uses a tightly coupled routing scheme, where 
name resolution and packet forwarding is performed by the same components. PSIRP/PURSUIT on 
the other hand, leverages a publish-subscribe mechanism called a rendezvous point. DONA opted for 
a flat naming scheme while CCN relies on hierarchical naming to improve scalability. For more 
information on these ICN architectures we refer to a case study in [ADIK12]. QuLa does not focus on 
naming as this can be adopted from previously established work in above mentioned ICN 
architectures. 

Service-Centric Networking. ICN architectures do not consider service requirements and constraints, 
rendering them less suited for service usage. This ICN limitation led to an increasing amount of 
research aiming to surpass ICN for more efficient service usage, commonly named SCN. T Braun et al. 
addressed common problems in ICN for service support [BHHR11], which are in line with our design 
considerations presented in the next section. One of the main research challenges in SCN is setting 
up connections between end-hosts for service sessions without prior knowledge about the host 
addresses. 

Serval [NDGK12] proposes a Service Access Layer to translate service names to instance addresses, 
while simultaneously setting up the TCP connection between both end-hosts. Serval focuses on 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 40 of 53

 

Copyright © FUSION Consortium, December 20 2013 

services running on mobile devices and aims to support late-binding and service migration. Despite 
making great contributions towards multi-homed services and seamless relocation of both users and 
services, Serval does not discuss service lifecycle management nor does it provide a routing protocol. 

SCAFFOLD [FAGK10] emphasizes on a flow-based anycast mechanism, allowing multiple instances to 
be addressed by the same service name. However, the suggested approach relies on underlying 
virtualization and changes to the existing network stack. SCAFFOLD does not focus on routing, thus 
not providing any routing protocol or service selection algorithm. 

Routing and service selection. Akamai [NSS10], one of the largest CDN providers, uses a centralized 
selection algorithm to map user demand to servers located in the network edge. Although Akamai 
leverages different metrics and a different optimization problem, it proves that a centralized 
mapping scheme is feasible. Akamai first performs high-level cluster mapping followed by low-level 
server selection. QuLa deviates from Akamai’s approach by utilizing one selection level in several 
smaller domains. 

DONAR [WJFR10] focuses on selection for Cloud services and presents a decentralized mapping 
scheme considering both load and latency as metrics. This work describes an interesting API for users 
to define cost functions used by the mapping nodes. QuLa presents a similar problem statement as 
DONAR but solves this for time-sensitive services by minimizing the response time. Also, DONAR 
solves mapping between clients and server replicas whereas QuLa maps between clients and service 
replicas, considering the possibility of several services running on one server. 

SoCCeR [SSRV11] is a decentralized routing protocol for services built on top of CCNx. Routing in 
SoCCeR is based on Ant Colony Optimization, a decentralized and probabilistic optimization heuristic 
which configures the Forwarding Information Base of CCNx nodes. However, this decentralized 
approach requires periodic Interest Ants to be sent out on every link in the network. We argue that 
metrics affecting service time change often and require frequent monitoring, making a decentralized 
monitoring scheme sensitive to high network load. 

In comparison, QuLa extends ICN with service-centric algorithms and does not require changes of the 
existing IP stack. The network-driven algorithms, presented in the following sections, assume a 
hybrid approach which combines centralized service selection with a decentralized routing protocol. 
Using this approach we aim to minimize monitoring overhead while maintaining a scalable approach. 

5.3 Load distribution 

We envision network management components containing a reactive loop running frequently, 
responding to changes in user demand or service load by reconfiguring the routing tables to a fixed 
set of instances. In the next section we describe the assumptions made by our first approach 
algorithm. Next, we present the problem statement and objective to be minimized. We describe the 
QuLa algorithm implemented as a meta-heuristic and compare with several alternative approaches. 

5.3.1 Assumptions 

The service selection algorithm maps user demand to available service instances. However, 
considering every client individually is not feasible when load-balancing must be done in real-time. 
Therefore, we aggregate the load by a group of users located in a nearby geographical into an 
aggregated load from client node i. Execution zones are represented as server nodes j, with a queue 
for incoming requests. 

Next, we assume a fixed service placement: the number of running instances per execution zone is 
assumed to be constant. We further assume a fixed service execution time; the execution time 
depends on many factors, such as hardware, influence of other processes on the system and the 
service itself. The problem statement presented in section 5.3.2 allows use of any model to represent 
service execution time. However, our first approach uses the M/D/1 queuing theory model and 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 41 of 53

 

Copyright © FUSION Consortium, December 20 2013 

assumes a fixed execution time for all service requests. Last, we assume a fixed user demand. 
Dynamic demand requires input from feedback to learn from previous decisions, which is not 
considered in this first approach algorithm. 

In future work we will expand our selection algorithm to support dynamic demand patterns using 
feedback. 

5.3.2 Problem statement 

Consider a network graph containing edges E, nodes N and services S. The lambda values �(�, �) are 
the requests per second from client node i for service s. Nodes with belong to the client nodes 
�� 	⊂ �. Nodes hosting at least one instance of a service � ∈ � belong to the server nodes �
 	⊂ �. 
The distribution matrix R(i,j,s) ∈ [0,1] denotes the fraction of user demand from client node i for 
service s, to be processed in server node j. A service takes ��,� seconds to process a request for 

service s on server node j, not considering queue delay. 

A generic objective to map client demand to service instances, using demand fractions, is the 
following: 

� � � ����(�, �, �) ∗ (�(�, �, �) ∗ �(�, �)	)	
�	∈	��	∈	���	∈	��

 

 

The objective in the current QuLa implementation is to optimize the average system response time 
given a fixed service placement and fixed user demand. There are two major factors that affect the 
response time of a service: the time spent on the network and the time spent on the server. Servers 
processing a larger demand have more impact on the average response time.  

Taking into account the above, we find the following objective: 

min∑ ∑ ∑ !	�"#$%&�' +	�)*+�%���&,- ∗ (�(�, �, �) ∗ �(�, �)	)	�	∈	��	∈	���	∈	��
∑ ∑ �(�, �)�	∈	�	�	∈	��

 

 

The first part of the objective function represents the response time of a single request, considering 
the network latency and the estimated queuing delay and processing time. The second part 
represents the partial user demand sent to the service, which is taken into account when calculating 
the contribution to the average system response time. Finally, the numerator is normalized by 
dividing with the total user demand. 

�"#$%&�' is the Round Trip Time (RTT) between the client node i and server node j. The objective 

supports use of any path between client and server nodes. �)*+�%���&, denotes the time spent on the 

server, including queue delays and execution time.  

We illustrate this with an example assuming that our system is an M/D/1 queuing system. We find 

 , where  denotes the total incoming request rate on node j 
divided by the outgoing rate. Considering the influence of �(i, j, s) we find with 1/��,� being the 

outgoing rate. The objective implies that nodes which do not send any requests for a service 
(e.g.	�(�, �) is zero) will not contribute to the system response time. Also, the response time between 
node i and node j only contributes to the system response time if �(i, j, s) > 0. 

To guarantee that the demand of each client node is completely satisfied, the objective is limited by 
the following constraint: 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 42 of 53

 

Copyright © FUSION Consortium, December 20 2013 

 

Constraint 1: all client demand must be satisfied 

In the following sections we describe several alternative algorithms to find a load distribution matrix 
R. 

5.3.3 Algorithm outline 

Name resolution via DNS typically does not consider the server capacity or load induced by other 
clients in the network. Several clients may receive the same IP address for a selected name, and 
hence may overload the server. 

A better approach is a greedy algorithm which prioritizes client-server pairs with the least latency. In 
each iteration, the algorithm picks the client-server pair with the least network latency and assigns as 
much requests as possible from that client to the corresponding server, without exceeding the server 
capacity. We iterate through client-server pairs until all user demand is satisfied. 

This approach is very intuitive, assigning most demand to the client-server pairs which induce the 
lowest response time. However, by prioritizing a certain client-server pair, we indirectly penalize 
other clients which do not get to use this server’s full capacity anymore. This implies that a non-
greedy decision for client-server pairs with low latency can have positive effects on the response 
time of several nearby clients. 

The greedy algorithm always induces high workload on few servers while more distant servers 
remain idle most of the time. An alternative, algorithm 2, is to give each server an equal share of user 
demand, trading reduced workload for increased network latency. 

The greedy algorithm assigned large user demand to few servers while algorithm 3 attempts to 
assign little user demand to all available servers. It is likely that the optimal solution, which minimizes 
the objective, is located somewhere in between. However, the distribution matrix R in the objective 
function takes floating point numbers as value, creating an infinitely large solution space.  

We leverage a Simulated Annealing meta-heuristic to find a plausible solution in near real-time. 
Simulated Annealing does not guarantee to find an optimal solution in a finite amount of time. 
Instead, it searches through a large solution space in a short timeframe, inspecting multiple local 
minima on the solution curve. For a more detailed explanation of Simulated Annealing we refer to 
online sources (Simulated Annealing - Wikipedia). 

5.3.4 Evaluation 

Using Brite [BRITE13] we generate four types of network topologies: (1) small topologies with sparse 
connectivity, (2) small topologies with dense connectivity, (3) large topologies with sparse 
connectivity and (4) large topologies with dense connectivity. For each topology type we generate 
several sample networks, assign client-server roles, place service replicas, and generate user demand 
patterns. Using the average objective of these simulations for a set of fixed load values, we obtain 
reliable data required to make a confident assessment of the quality of each algorithm. 

5.4 Statistical load-balancing in service routers 

When demand is high, user requests must be load-balanced over multiple service instances. This is 
reflected in the selection algorithm by using a load distribution matrix R, assigning partial demand to 
available instances. At runtime, service routers load-balance user demand utilizing the fractions 
assigned in the load distribution matrix. In this section we describe the configuration process of a 
statistical load-balancing in the service routers to approximate the service selection. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 43 of 53

 

Copyright © FUSION Consortium, December 20 2013 

We propose for routers to know only the address of the next hop towards the service instance. Paths 
between end-hosts can be stipulated using custom policies, and each service router is involved in the 
selection process by forwarding to the next hop according to its forwarding table. Routers like R3-R7 
in Figure 10 need to take into account the source of the service request to determine the outgoing 
interface (source-routing). As this inflates the routing tables, we seek an approximation by a 
statistical load-balancing based on the optimal load distribution. An important research question is 
how much this approximation degrades the overall system response time. 

We investigate two variants to tackle this problem. 

Variant 1: source routing. We configure service routers with separate forwarding entries for each 

source address to reflect the service selection. Consider ��,� the total demand from user i for service 

s, �(�, �, �) the percentage of that demand to be processed on server j, 01,�&(�, �) the incoming 

percentage of ��,� on service router k, and 012,+3$(�, �) the percentage of 01,�&(�, �) forwarded to 

router l on router k. Initially, all 0�& and 0+3$ are set to zero.  

The forwarding tables are configured as follows: (1) we stipulate a path for each client-server pair (i,j) 

and a given service s. (2) For each router k on that path, �(�, �, �) is added to both 01,�&(�, �) and 

012,+3$(�, �), where l is the next service router on path. (3) After all pairs (i,j) are traversed for service 

s, we express 01&,+3$(�, �) as fraction of 01,�&(�, �), so all values are in range [0,1].  

Figure 11 shows a sample configuration: 40% of user 1’s demand is sent to R5, which forwards 50% 
to R6 and 50% to R7. Thus, 20% of user 1’s demand reaches zone B and 20% reaches zone C, as per 
selection. 

 

Figure 10: a first step towards true hop-based routing: source routing. 

Variant 2: weighted average. Source routing is not scalable for many users and services due to the 
large forwarding tables this produces. We present a statistical method to realize true hop-based 
routing, using only service names as input. 

Eliminating sources addresses by averaging the outgoing percentages ∑ 012,+3$(�, �)�	∈	��  does not 

suffice to reflect the service selection. We observe that outgoing demand on a service router k is 

most influenced by both larger �� and 01,�&(�, �). However, using the method described in source 

routing, we find the total incoming demand for service s on router k, 41,�&(�) = ∑ �� ∗�	∈	��
	01,�&(�, �)	, and the outgoing demand to router l, 412,+3$(�)	= ∑ �� ∗	01,�&(�, �) ∗�	∈	��
	012,+3$(�, �). Both incoming and outgoing demand already considers �� and 01,�&(�, �). Thus, we 

eliminate source address i using a weighted average: 

012,+3$(�)5	412,+3$(�)
41,�&(�) 5

∑ �� ∗	01,�&(�, �) ∗ 	012,+3$(�, �)�	∈	��
∑ �� ∗ 	01,�&(�, �)	�	∈	��

 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 44 of 53

 

Copyright © FUSION Consortium, December 20 2013 

where 012,+3$(�) denotes the new outgoing percentages using only service name as input. Only 

012,+3$(�) is configured in the forwarding tables, enabling service routers to load-balance requests 

as dictated per service selection without considering source address. 

5.5 Experimental results 

We implemented a prototype by extending the open source CCNx code provided by PARC [CCNX13]. 
Contributions made include new packet types, periodic monitoring functionality, forwarding tables 
using probability forwarding and other features necessary for service usage. Our prototype was 
evaluated through emulations on the Virtual Wall [VWALL13] testbed. The prototype’s evaluations 
confirmed the necessity of both the network latency and server queue sizes to be considered in the 
objective to minimize the average system response time. 

In order to evaluate large network topologies we created a proof-of-concept simulation environment 
using CloudSim [CLOUDS13] a framework for modelling and simulation of Cloud Computing 
infrastructures and services. We extended CloudSim’s data centre objects to add an internal service 
router and host exactly one computing machine per data centre. To simulate M/D/1 queue systems 
(1) requests are scheduled using CloudSim’s ‘Space Shared’ Scheduler, (2) components are 
configured so that each request has a fixed execution time, and (3) client applications implement a 
Poisson process. Consecutive samples of a Poisson process follow an exponential distribution but 
produce an average demand converging to the input parameter.  

We use Brite to generate four types of network topologies and retrieve several sample topologies 
from each type. Using the generated topologies and fixed service placement, service selection is 
performed by algorithm 3 and returns the load distribution matrix R. The CloudSim broker configures 
service routers residing in each data centre based on the load distribution matrix. In the final 
configuration step, the broker deploys the service process on each server node, ready to process 
requests. 

To validate that each routing protocol correctly reflects the service selection load distribution matrix, 
we implemented three brokers and three data centre types; (1) the direct routing approach with 
requests going from client to server using IP routing, (2) the source routing approach (variant 1 in 
section 5.4), and (3) the weighted average hop-based routing protocol (variant 2 in section 5.4). 

5.6 Future work and Research Challenges 

While we are able to access services with minimal response time using name-based request, the first 
approach selection algorithm is still very constrained. Assuming a fixed execution time is not ideal 
and despite allowing different server models to be used, we still aim to develop our own model to 
deal with multiple services running on one server. This problem is more problematic than simply 
dividing the execution time by the amount of instances running on one system, as each instance 
could have a different base execution time or have input data affecting its execution time. Once 
we’ve establish such a model, the QuLa selection can support any combination of instances, running 
on various servers in the network. 

The next step in our research is to create a dynamic selection algorithm. Currently, all demand is 
assumed fixed, and the service selection algorithm searches for the best possible distribution given a 
fixed set of instances. When user demand changes, the previous selection is subject to change, 
requiring reconfiguration of the network.  

A naïve approach runs the static selection algorithm each time user demand changes. This approach 
is prone to oscillation (over-reacting to changes) and in a worst case scenario the system keeps 
returning to a previous state, only to repeat this pattern. To avoid circulating previous configurations 
and to become less sensitive to oscillation, feedback is necessary. We plan on developing a self-
learning algorithm and implement control loop feedback. This allows use of prediction algorithms 
and trend detection, giving the network components a solid foundation to build decisions on. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 45 of 53

 

Copyright © FUSION Consortium, December 20 2013 

Once the previous challenges are complete, we repeat this process for the service placement 
algorithm. We start with a static algorithm and a simple set of constraints. We then create a dynamic 
and self-learning algorithm to cope with dynamic demand and topology changes. We envision both 
service selection and service placement modules to cooperate, as it is likely that the need for 
relocation is established when the selection algorithm cannot find a feasible solution. 

6. ROUTING ALGORITHMS 

In this section we propose a first approach to discovering the closest running instances of a service. 
We assume a large number of execution zones distributed around the globe. The FUSION 
orchestration logic has previously deployed service instances in a subset of these execution zones – 
according to the application developer’s deployment strategy, the predicted demand from users and 
the services’ performance targets. Each service is addressed by ServiceID and when a user wishes to 
invoke a service she injects a request into the FUSION service routing plane to discover the N closest 
execution zones running the requested ServiceID. We assume in this initial version of the FUSION 
routing protocol that the service routers focus on returning the N best execution zones from a 
network performance perspective and that instance selection on any service-specific metrics is 
achieved in a second phase interaction between the requesting user and the N returned execution 
zones/service instances. The sequence of operations from the users’ perspective is therefore: 

1. A user issues a request to her local FUSION service router for N closest execution zones 
running the required ServiceID. 

2. The FUSION routing plane operates as described below to return the locators of the N-
closest execution zones. 

3. The user (or the application running in the user’s end device) may contact one or more of the 
N execution zones to refine the selection according to the load on the servers or on other 
service-specific metrics that can be queried from the execution zones/service instances. 
Alternatively the user/application may directly select one of the N execution zones without 
querying for additional information. 

4. The user (or application) invokes the service at the selected execution zone. 
 

We develop a hierarchical clustering technique and accompanying routing protocols that allow the 
creation and maintenance of geographically-sensitive service routing plane. For static services with a 
small numbers of instances running in a few execution zones, this can be done easily with a 
centralised system. However, in order for the system to appropriately scale for large numbers of 
execution zones and service instances, it becomes necessary to implement it as a distributed system, 
partitioning the resource information indexes and distributing the processing of resource discovery 
requests between the service routers. Traditionally, this is achieved using Distributed Hash Tables 
(DHTs, [MAYM02] [ARTI07] [ZOEL06]). However, due to their long search times, conventional DHTs 
are unsuitable for demanding multimedia applications [FALK07]. To address this, the presented 
system uses routing and forwarding algorithms similar to those of a DHT, but with additional 
optimisations aimed at increasing accuracy and speed for reaching geographically close execution 
zones. 

In this system, users/applications use the system to directly send messages to a set of N  
geographically close execution zones running a specific ServiceID. Conceptually, the operation of the 
system is similar to that of anycast, which routes messages to the closest member of a given group, 

but generalising it to efficiently route messages to the N  best options (in this case, the 
geographically closest ones). 

6.1 n-casting Overview 

We begin by defining the following entities:  



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 46 of 53

 

Copyright © FUSION Consortium, December 20 2013 

• execution zone 

• service group – the execution zones running instances of a specific ServiceID 

• cluster  

• service router  

• leaf cluster  

In n-casting execution zones join a service group by informing their local service router. Service 
routers are organized in a hierarchical structure (see Figure 11) which they use to disseminate service 
group membership globally (black lines in Figure 11). When a user wants to route a message to the N 
closest execution zones running a ServiceID it sends a message to its local service router which is part 
of the FUSION service routing plane. The message is routed through service routers (yellow arrows in 
Figure 11) and replicated if needed. The last service routers deliver the message(s) to the N closest 
group members. 

In order to build the routing tables, the design of the n-casting system is centred around three main 
concepts:  

    1.  a hierarchical structure of clusters of execution zones built based on their proximity;  

    2.  a protocol for creating connections to exchange information about service group members 
available in these clusters;  

    3. an adaptive number representation system to aggregate service group membership and 
estimate the number of distinct members per ServiceID.  

 

Figure 11: Message Forwarding in N-Casting  

While the typical approach in structured overlays (e.g. DHTs) is to partition the key space of the 
resource identifiers, in n-casting we partition the surface of the earth following Internet node 
density. Execution zones are organised in clusters according to their geographic proximity. To limit 
the management cost for each one of these clusters, they are designed to contain a limited number 
of execution zones. This allows local servers, which shall be denoted as n-casting service routers, to 
maintain information about service group memberships within the cluster without the need for 
aggregation. These low level clusters are merged into larger clusters at several levels of hierarchy, 
allowing for exchanging information for areas of increasingly larger size. In is important to note that 
every service router has not only full information of the smallest cluster that they belong to, but also 
progressively more summarised information of both all the larger clusters that contain it and other 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 47 of 53

 

Copyright © FUSION Consortium, December 20 2013 

areas further away from it. This ensures that information about service group members is less 
aggregated in the most desirable areas where execution zones lie in closer geographic distance. Each 
service router maintains a view of service group membership for all groups in different areas, with 
greater level of detail for closer as opposed to more distant areas. Service routers then form an 
overlay network and exchange aggregated information about the service group membership of 
execution zones in their cluster. This information is captured in a floating point data structure that 
allows the estimation of how many distinct execution zones are members of the service group 
identified by that key. 

6.2 Evaluation 

Due to its impact on building high-performance overlays, the accuracy of message delivery is one of 
the most important performance parameters of the n-casting system. Informally, this is a measure of 
how far away from the optimum is the geographic locality performance of the n-casting system. 

In the general test case, queries are issued by any node in the system requiring delivery to the N  
geographically closest representatives of a particular membership group. In order to test the system 
in widely different conditions, we consider groups with different popularity, i.e. with different total 
numbers of group members. Popularity has a direct impact on the accuracy of the n-casting 
messages results. To see why, consider a group with a large population of members (a highly popular 
group). Whenever any member of this group sends an n-casted message, appropriate recipients can 
be usually found in the same leaf cluster where the sending node is, or in close low-tier clusters. 
Conversely, for groups with small numbers of members (highly unpopular groups), members will be 
only be available several hops away, increasing thus the potential for errors introduced by the 
hierarchical clustering structure. 

The number of update messages exchanged under different group popularity settings has been 
evaluated using simulations. The simulator models the view from a particular node, the update 
messages it sends to its remote connections to announce the membership fluctuations in its local 
cluster, and the update messages it receives as a result of membership fluctuations in the remote 
clusters it is connected to, hereby referred to as outgoing and incoming messages respectively. 

6.3 Related Work 

Anycasting, defined by RFC 1546 [PART93], proposed a method for service discovery. Work has been 
presented on making IP layer anycast viable through managing the routing of anycast groups. The 
classification of groups as being local and their frequency of use allows Katabi [KATA00] to cache 
popular routes and not waste resources on rarely used routes. The premise is that from a certain 
location certain services simply are not going to see the same level of usage. 

To create an overlay that is geographically aware, IP geolocation has been shown to provide 
accurate, predictable results [FREE06] [AGAR09]. This has been confirmed not only by third-party 
datasets such as Peerwise [LUME07] and iPlane [MADH06], but also by our own extensive active 
measurements [LAND13a] [LAND13b]. 

Overlays such as OASIS [FREE06] require nodes to maintain multiple databases to obtain knowledge 
of overlay membership, popular groups and proximity data. Our n-casting system requires nodes to 
maintain a single data structure, with the overlay hierarchical clustering providing intuitive proximity 
and popularity information to nodes. 

Hierarchical overlays have been proposed before however the reason for creating a hierarchy was to 
group nodes that had similar resource levels such as bandwidth, computational power and uptime in 
overlays. Evaluation of such overlays was conducted by Lu [LUWU07], Zoels [ZOEL06] and Artigas 
[ARTI07] showing that grouping nodes based on certain characteristics can improve overlay 
performance. The system proposed creates a hierarchy that does not group nodes by resources or 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 48 of 53

 

Copyright © FUSION Consortium, December 20 2013 

uptime, but rather, by their physical location; hence, higher tiers of the hierarchy provide an 
abstracted view of the geography of those tiers below. 

Locality-aware hierarchical overlays have been shown to provide positive results. Experiments 
conducted by Xu [XUTAN03] showed as the number of RTT measurements increase, the latency 
stretch decreases when expanding ring search and hybrid landmarking algorithm plus RTT was used. 
The effectiveness of landmarking is highlighted by Xu [XUMIN03], where HIERAS, a hierarchical DHT 
exhibits lower routing latency with an increase in landmarking nodes. 

N-casting can be also positioned as an operation that fills the spectrum of network communication 
space between anycast and multicast [CART03]. Previous efforts to introduce systems that had an 
element of n-casting was investigated by Leung [LEUN06] and Nguyen [NGUY04]. Leung’s paracasting 
system aimed to deliver content concurrently that had been broken up into chunks, similar to that of 
Bittorrent, from multiple sources for content that is replicated on multiple servers. Neither Leung or 
Nguyen’s proposals consider the overlay maintenance cost, sending to multiple members in the 
same anycast group and in the case of Leung, considers replicas stored on high-bandwidth 
connections. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 49 of 53

 

Copyright © FUSION Consortium, December 20 2013 

7. CONCLUSION  

This deliverable presented the results of the breadth-first approach that has been taken by the 
FUSION consortium for the Service Routing layer. This layer provides name-based, in-network 
selection between Execution Zones for service requests. This main selection primitive was 
crystallized into a set of functional requirements for naming, forwarding, routing, selection and 
monitoring. An extensive scan on service-aware networking approaches identified several design 
considerations. 

The work plan in the second year is focused on making the architectural choices more concrete in 
terms of implementation and evaluation. Specifically, the following topics will be studied: 

• routing scalability: given the huge number of services, how can routing tables be 
compressed? Lines of thought include an intelligent use of routing hints and compact routing 
schemes. 

• selection agility: service availability is prone to rapid changes over time and space. A major 
research topic is how the in-network selection can quickly adapt to these changing 
conditions.  

• interplay with the orchestration layer: an important consideration is the split of functionality 
between the service routing layer and the orchestration layer.  



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 50 of 53

 

Copyright © FUSION Consortium, December 20 2013 

8. REFERENCES 

[ADIK12] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, “A Survey of Information-Centric 
Networking”, Communications Magazine, IEEE, vol. 50, no. 7, pp. 26-36, 2012. 

[AGAR09]  S. Agarwal and J. Lorch. Matchmaking for online games and other latency-sensitive P2P 
systems. ACM SIGCOMM Computer Communication Review, 39(4):315–326, 2009. 

[AHLGREN13] Bengt Alghren, NetInf global connectivity – routing and forwarding 
http://www.ietf.org/proceedings/interim/2013/02/14/icnrg/slides/slides-interim-2013-
icnrg-1-1.pdf 

[ARTI07]  M. Artigas, P. Lopez, and A. Skarmeta. A comparative study of hierarchical dht systems. 
In Proc. of IEEE LCN, pages 325–333. IEEE, 2007. 

[BANE06]  A. Banerjee and J. Ghosh. Scalable clustering algorithms with balancing constraints. 
Data Mining and Knowledge Discovery, 13(3):365–395, 2006. 

[BARI12] M. Bari, S. Chowdhury, R. Ahmed et al., “A Survey of Naming and Routing in 
Information-Centric Networks”, IEEE Communications Magazine, December 2012. 

[BHHR11] T. Braun, V. Hilt, M. Hofmann, I. Rimac et al., “Service-Centric Networking”, 
Communications Workshops (ICC), 2011 International Conference on, 2011. 

[BRITE13] "BRITE: Boston university Representative Internet Topology gEnerator," [Online]. 
Available: http://www.cs.bu.edu/brite/. 

[CAJF11]  J. Cheny, M. Arumaithuraiy, L. Jiao ; X. Fu, K.K. Ramakrishnan, COPSS: An Efficient 
Content Oriented Publish/Subscribe System, 2011 Seventh ACM/IEEE Symposium on 
Architectures for Networking and Communications Systems (ANCS 2011) , New York, 
2011. 

[CART03]  C. Carter, S. Yi, P. Ratanchandani, and R. Kravets. Manycast: exploring the space 
between anycast and multicast in ad hoc networks. In Proceedings of the 9th annual 

international conference on Mobile computing and networking, pages 273–285. ACM, 
2003. 

[CART12]  A. Brodersen, S. Scellato, and M. Wattenhofer. YouTube around the world: geographic 
popularity of videos. In Proceedings of WWW, WWW ’12, pages 241–250, 2012. 

[CHA08]  M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain. Watching Television Over 
an IP Network. In Proceedings of ACM IMC, pages 71–84, 2008. 

[CIA]  The World Factbook. Country comparison: Internet users. 
https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2153rank.html. 

[CLOUDS13] The CLOUDS Lab: Flagship Projects – Gridbus and Cloudbus,” The University of 
Melbourne [Online]. Available: http://www.cloudbus.org/cloudsim/ 

[CMA07] Camarillo, Gonzalo, and Miguel-Angel Garcia-Martin. The 3G IP Multimedia Subsystem 
(IMS): Merging the Internet and the Cellular Worlds, Wiley, 2007 

[CNNX13] Project CCNX, PARC [Online] http://www.ccnx.org  

[CUEV10]  R. Cuevas, N. Laoutaris, X. Yang, G. Siganos, and P. Rodriguez. Deep diving into 
BitTorrent locality. SIGMETRICS Perform. Eval. Rev., 38(1):349–350, June 2010. 

[DKOF13] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, “Network of Information (NetInf) – An 
Information-Centric Networking Architecture”, Computer Communications, vol. 36, no. 
7, pp. 721-735, 2013 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 51 of 53

 

Copyright © FUSION Consortium, December 20 2013 

[FAGK10] M. J. Freedmann, M. Arye, P. Gopalan, S. Y. Ko et al, “Service-centric networking with 
Scaffold”, Princeton Universities, 2010 

[FALK07]  J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson. Profiling a million 
user DHT. In Proc. of ACM SIGCOMM IMC, USA, 2007. 

[FNTP12] N. Fotiou, P. Nikander, D. Trossen, G. Polyzos, “Developing Information Networking 
Further: From PSIRP to PURSUIT”, Broadband Communications, Networks, and Systems, 
vol. 66 

[FREE06]  M. Freedman. OASIS: Anycast for Any Service. In Proc. of Symp. on NSDI, USENIX, 2006, 
2006. 

[GEONAMES]  GeoNames. http://www.geonames.org, 2013. 

[GUTT84]  A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. of the 

ACM SIGMOD, 1984. 

[HAAW13]  M. Hoque, S. Obaid Amin, A. Alyyan, L. Wang, B. Zhang, L. Zhang, NLSR: Named-data Link 
State Routing Protocol, The 3rd ACM SIGCOMM Workshop on Information-Centric 
Networking, August 2013. 

[HADL12]  Dongsu Han et al. XIA: Efficient Support for Evolvable Internetworking. The 9th USENIX 
Symposium on Networked Systems Design and Implementation (NSDI’12) (San Jose, CA) 
April 25-27, 2012. 

[JSTP09] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, R. L. Braynard 
(PARC) Networking Named Content, CoNEXT 2009, Rome, December, 2009. 
http://www.ccnx.org/. 

[KATA00]  D. Katabi and J. Wroclawski. A framework for scalable global IP-anycast (GIA). ACM 

SIGCOMM Computer Communication Review, 30(4):3–15, 2000. 

[KAUN09]  S. Kaune, K. Pussep, C. Leng, A. Kovacevic, G. Tyson, and R. Steinmetz. Modelling the 
Internet Delay Space Based on Geographical Locations. In Proc. of the Euromicro PDP, 
pages 301–310, feb. 2009. 

[KECK07] T. Koponen, A. Ermolinskiy, M. Chawla, K. H. Kim et al. “A Data-Oriented (and Beyond) 
Network”, in SIGCOMM, Kyoto, Japan, 2007. 

[LABO10]  C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian. Internet 
inter-domain traffic. In Proceedings of ACM SIGCOMM, pages 75–86. ACM, 2010. 

[LAND13a]  R. Landa, J. T. Araujo, R. G. Clegg, E. Mykoniati, D. Griffin, and M. Rio. The Large-Scale 
Geography of Internet Round Trip Times . In Proc. of IFIP Networking, 2013. 

[LAND13b]  R. Landa, R. G. Clegg, J. T. Araujo, E. Mykoniati, D. Griffin, and M. Rio. Measuring the 
Relationships between Internet Geography and RTT . In Proc. of IEEE ICCCN, 2013. 

[LEON08]  D. Leonard and D. Loguinov. Turbo King: Framework for Large-Scale Internet Delay 
Measurements. In Proc. of IEEE INFOCOM, pages 31–35, 2008. 

[LEUN06]  K. Leung and V. Li. A paracasting model for concurrent access to replicated Internet 
content. Multimedia, IEEE Transactions on, 8(1):90–100, 2006. 

[LIBE05]  D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Geographic routing 
in social networks. Proceedings of the National Academy of Sciences, 102(33):11623–
11628, August 2005. 

[LUME07]  C. Lumezanu, D. Levin, and N. Spring. PeerWise discovery and negotiation of faster 
paths. In Proc. of ACM HotNets, 2007. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 52 of 53

 

Copyright © FUSION Consortium, December 20 2013 

[LUWU07]  M. Lu, J. Wu, K. Peng, P. Huang, J. Yao, and H. Chen. Design and evaluation of a P2P IPTV 
system for heterogeneous networks. Multimedia, IEEE Transactions on, 9(8):1568–1579, 
2007. 

[MADH06]  H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and A. 
Venkataramani. iPlane: An information plane for distributed services. In Proc of USENIX 

NSDI, pages 367–380. USENIX Association, 2006. 

[MAXMIND]  MaxMind GeoLite City. http://www.maxmind.com/app/geolitecity, 2013. 

[MAYM02]  P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based 
on the xor metric. Peer-to-Peer Systems, pages 53–65, 2002. 

[NARA12] A. Narayanan, D. Oran, NDN and IP Routing: Can It Scale? 

 http://tools.ietf.org/group/irtf/trac/raw-attachment/wiki/icnrg/IRTF%20-
%20CCN%20And%20IP%20Routing%20-%202.pdf  

[NDGK12]  Serval: An End-Host Stack for Service-Centric Networking. By Erik NordstrÃ¶m, David 
Shue, Prem Gopalan, Rob Kiefer, Matvey Arye, Steven Ko, Jennifer Rexford, and Michael 
J. Freedman. In Proc. 9th Symposium on Networked Systems Design and 
Implementation (NSDI â ™12), San Jose, CA, April 2012. 

[NDN]  Named Data Networking, project Web page, available at http://named-
data.net/project/ 

[NDN10] L. Zhang, D. Estrin, J. Burke, V. Jacobson et al. “Named Data Networking (NDN) project”, 
PARC, 2010 

[NEUSTAR]  Neustar IP Geolocation. http://www.neustar.biz/solutions/ip-geolocation, 2013. 

[NGUY04]  T. Nguyen and A. Zakhor. Multiple sender distributed video streaming. Multimedia, IEEE 

Transactions on, 6(2):315–326, 2004. 

[NGSON11]  NGSON (Next Generation Service Oriented Network) – IEEE 1903, “Standard for the 
Functional Architecture of Next Generation Service Overlay Networks”, 2011. 

[NSS12] E. Nygren, R. K. Sitaraman, J. Sun, “The Akaimai network: a platform for high-
performance internet applications”, ACM SIGOPS Operating Systems Review, vol. 44, no. 
3, 2010. 

[PADH98]  J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: a simple 
model and its empirical validation. SIGCOMM Comput. Commun. Rev., 28(4):303–314, 
1998. 

[PART93]  C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. RFC, 1993. 

[PSIRP10] Deliverable D2.5 – Final Updated Architecture http://www.fp7-pursuit.eu  

[RFC6920] Naming Things With Hashes, http://datatracker.ietf.org/doc/rfc6920/ 

[SAIL13] D.B.3 – Final NetInf Architecture http://www.sail-project.eu 

[SAIL13-3.2] D-3.2 NetInf Content Delivery and Operations http://www.sail-project.eu  

[SAIR08]  “State of the Art on IRMOS technologies”, Interactive Realtime Multimedia Applications 
on Service Oriented Infrastructures ICT FP7-214777, Deliverable D2.3.1, 2008. 

[SCEL11]  S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track globally, deliver locally: 
improving content delivery networks by tracking geographic social cascades. In 
Proceedings of WWW, pages 457–466, 2011. 



Initial specification of service-centric routing protocols, forwarding & service-
localisation algorithms 

Page 53 of 53

 

Copyright © FUSION Consortium, December 20 2013 

[SSRV11] S. Shanbbag, N. Schwan, I. Rimac, M. Varvello, “SoCCeR: Services over content-centric 
routing”, in ACM Workshop on Information-Centric, Toronto, 2011. 

[VNI16]  Cisco Visual Networking Index: Forecast and Methodology, 2011-2016. 

[VST09] Van Jacobson, D. K. Smetters, J. Thornton et al. “Networking Named Content”, in Proc. 
of the 5th International Conference on Emerging Networking Experiments and 
Technologies (CONEXT), 2009. 

[VWALL13]  "iLab.t Virtual Wall | Internet Based Communication Networks and Services," IBCN, 
[Online]. Available: http://www.ibcn.intec.ugent.be/content/ilabt-virtual-wall. 

[WITT10]  M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y. Zhao. Exploiting locality of 
interest in online social networks. In Proceedings of ACM CoNEXT, pages 25:1–25:12. 
ACM, 2010. 

[WJFR10]  P. Wendell, J. W. Jiang, M. J. Freedman, J. Rexford, “Donar: decentralized server 
selection for cloud services”, ACM SIGCOMM Computer Communication Review, vol. 40, 
no. 3, 2010 

[XUMIN03]  Z. Xu, R. Min, and Y. Hu. HIERAS: A DHT Based Hierarchical P2P Routing Algorithm. In 
Proceedings of the International Conference on Parallel Processing, pages 187–196, 
2003. 

[XUTAN03]  Z. Xu, C. Tang, and Z. Zhang. Building topology-aware overlays using global soft-state. In 
Distributed Computing Systems, 2003. Proceedings. 23rd International Conference on, 
pages 500–508, 2003. 

[ZHAN06]  B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang. Measurement based 
analysis, modeling, and synthesis of the internet delay space. In Proceedings of ACM 

IMC, pages 85–98, 2006. 

[ZOEL06]  S. Zoels, Z. Despotovic, and W. Kellerer. Cost-based analysis of hierarchical dht design. 
In Proc. of IEEE P2P, pages 233–239. IEEE, 2006. 

 


