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Abstract In this deliverable, we provide an update on the specification, design and 

implementation of the service resolution layer in FUSION. We first describe the 

architectural and policy aspects of intra-domain and multi-domain resolution. Next, we 

discuss the design of the different interfaces of the service resolver. In the last part of 

this deliverable, we report on the progress in the design of various service resolution 

algorithms, and present an overview of the current implementation status of the key 

components in the FUSION service resolution layer prototype.  
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EXECUTIVE SUMMARY 

This document is a deliverable of the “Future Service-Oriented Networks” (FUSION) FP7 project. It 

describes the functional requirements and interfaces of the service resolution layer in the FUSION 

architecture. The key challenge for this layer is the resolution and load-balancing of service requests 

to the best instance, given the existence of many different potential execution points and 

dynamically instantiated service instances with varying load. We refer the reader to D2.2 for an 

overall view on the architecture and the interfaces, and to D3.2 for a detailed discussion on service 

orchestration aspects. 

The service resolution layer is conceived as a collection of peering resolution domains, akin to the 

Autonomous Systems (AS) in the Internet. In this deliverable, we detail the interfaces and functional 

aspects of both intra-domain and inter-domain resolution. We study the roles and objectives of the 

different entities and how the protocols of the service resolution layer must be shaped to support 

policy enforcement.  

This intra- and inter-domain analysis results in a functional decomposition of the service resolver and 

a description of its interfaces. In the second part of this deliverable, we elaborate on the different 

messages that are needed for each of those interfaces. The syntax of all service resolution messages 

has been worked out, resulting in the novel Networked Services Resolution Protocol (NSRP) that is 

presented in this deliverable. NSRP supports service anycast for resilience and load balancing, direct 

invocation with edge filtered access for security, support for any name space and more complex 

query results to enable several types of applications. The syntax details are presented in the 

appendix of this deliverable. 

We also present an initial study on service resolution for composite services. Depending on how 

much knowledge on the composite service structure is available in the resolution layer, a more 

optimal replica selection can be realized. This comes at the price of more complexity. In this 

deliverable, we only report exploratory work on this topic, which serves as input to identify the need 

for architectural re-evaluation and extension to support composite services, planned in year 3. 

The algorithmic work has been progressing as well in the second year of the project. In this 

deliverable, we present two dynamic selection algorithms for mapping user requests to service 

instances. The first algorithm is targeting service resolution in a single domain. Upon request arrival, 

it constructs service availability graphs based on session slot advertisements and finds the shortest 

available network path. The second algorithm focuses on multi-domain resolution. The algorithm 

uses a Linear Programming approach to solve a multi-objective optimization problem, trading off 

user utility against network transit cost.  

Lastly, we report on the implementation status of the service resolution layer components, as well as 

the simulation and emulation environment in which these components will be evaluated. 
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1. INTRODUCTION 

The main primitive of the FUSION service resolution layer is to resolve service requests to the 

locator(s) of (the) most appropriate instance(s) among many replicas of the service component 

running in execution zones throughout the Internet. This fine-grained resolution capability is 

performed on the grounds of network metrics, service performance metrics and server load. 

As motivated in D4.1, the FUSION consortium makes the explicit choice to build the service 

resolution layer as an overlay network on the existing IPv4/IPv6 network stratum. The main primitive 

of this layer is the resolution of service requests from service ID to the transport network locator of 

the most suitable service replica. Clients subsequently establish a network connection via service-

specific means, beyond the control of the FUSION service resolution layer. 

Figure 1 presents a logical decomposition of the service resolution layer. The service resolution 

protocol combines network and service instance state to build forwarding tables in the service 

request resolvers. Instead of developing components for the monitoring of network, infrastructure 

and services, FUSION wants to leverage on the vast array of monitoring tools and frameworks 

available and only specifies the interface for the exposition of this state to the service resolution 

protocol. As shown, the network and instance state information also serves as input for service 

placement across execution zones. This logic is part of the orchestrator layer and is further discussed 

in D3.2. 

 

Figure 1: Logical view on service resolution layer 

 

The FUSION service resolution layer is structured in multiple domains. Each service resolution 

domain comprises one logically centralized service resolver to which the gateway of attached 

execution zones reports service instance availability and state information.  

The FUSION multi-domain service resolution is illustrated in Figure 2. Execution zones are grouped in 

several domains, according to their IP network attachment point. The service resolver has a detailed 

view on the underlying transport network that interconnects its execution zones, and the service 
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availability in execution zones attached to that part of the IP network. Service instance state is 

exchanged between the different service resolvers, possibly subject to service resolution policies, so 

that each domain can build its own catalogue of service instances worldwide. Clients direct their 

service request to their service resolver. This resolver will first try to resolve this request to an 

instance running in one of the local execution zones. If no suitable instance is available, and if 

allowed by the service QoS requirements and deployment policies, the request will be resolved to an 

instance running in another domain. 

 

Figure 2: Service resolver collects monitoring information from instances running in execution 

zones in its domain and exchange this with other domains. 

Users send a request to the service resolver of their domain. Requests that cannot be resolved in the 

domain, either because the service is not deployed or available, it can be resolved to the locator of 

an instance hosted in an execution zone of another domain. The resolution can be done either in the 

domain from where the request originates, either by forwarding the request to a service resolver in 

another domain. This multi-domain architecture enables advanced service resolution policies 

imposed by different stakeholders, as detailed in section 3. 

As update of D4.1, this deliverable focuses on the service resolution layer of the FUSION architecture, 

including the design and specification of interfaces as well as the implementation of its constituting 

components (the service resolver and the zone gateway
1
). Its main contributions are: 

- a functional description of service resolution in a single domain. This involves the 

communication and interaction between service instances, the zone gateway and their 

service resolvers 

- a functional description of policy-based multi-domain service resolution 

- a logical decomposition of the service resolver and discussion of each interface 

- a detailed specification of the Networked Services Resolution Protocol that runs between 

clients and service resolvers, and between service resolvers. The exact syntax is presented in 

the appendix of this deliverable. 

- progress report on the design, implementation and evaluation of different service resolution 

algorithms that have been developed 

- status report on the prototype for the service resolution layer that will be built in the project 

This deliverable is structured as follows. We first present a functional discussion on intra- and inter-

domain service resolution. Then, we zoom in on each interface of the service resolution layer. In the 

last part, we present experimental results on service resolution algorithm and an update on the 

implementation status of the prototype of the service resolution layer. 

                                                           
1
 We refer the reader to deliverables D2.1 and D2.2 for an overall view on the architecture and the interfaces. 
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2. INTRA-DOMAIN SERVICE RESOLUTION 

In this section, we elaborate on the internals of a service resolution domain. Multi-domain aspects 

are discussed in the next session.  

 Scope of a service resolution domain 2.1.1

A service resolution domain is defined as the collection of one (logically centralized) service resolver 

and the execution zones that directly report via their zone gateway service instance statistics to this 

service resolver. The resolver governs the resolution to instances hosted in one of its execution 

zones, although for scalability reasons it can allow service resolvers in other domains to handle 

requests to execution zones in its own domain. 

Each service resolver builds its own database with network and service state information. While 

service state information is advertised by the zone gateway component of execution zones, network 

monitoring information can be collected via various means: queried from other service resolvers or 

via existing monitoring tools. Given the vast number of networking monitoring tools available, 

FUSION does not mandate a particular network monitoring framework. Instead, to accommodate as 

many deployment models as possible, we only define in a functional way the interface for network 

state exposition. 

However, the FUSION consortium is studying one particular model where a service resolution 

domain coincides with the transport network of an ISP, advertised as a unique Autonomous System 

Number (ASN) in BGP.  The consortium considers this option as the most realistic deployment 

scenario for FUSION service resolution, with each ISP operating one logical service resolver that 

peers with service resolvers of other ISPs. In this scenario, the service resolver has direct access to 

the network management and monitoring of the underlying transport network that interconnects 

the different zone gateways.  

In light of the current state-of-the-art, we expect each IP router to be a potential execution zone that 

can run a limited number of service instances. For example, the Cisco IOX platform is enabling access 

to computing and storage resources within the network devices to host applications and interfaces 

as close to the network edge as possible [CISCO-IOX].  To have an initial expectation on the typical 

size of a service resolution domain, we crawled the CAIDA IP-router topology that is continuously 

collected and updated by a set of globally distributed probes [CAIDA]. This dataset contains the 

detected routers with their assumed geolocation. Table 1 shows the number of routers in this 

dataset for three European countries. Given the limitations of the collection process and the 

geocoding of IP addresses, the databases contains multiple routers with the same geolocation. In the 

third column of the table below, we provide the number of unique router locations in the database. 

Table 1 – Number of IP routers per country, as crawled from CAIDA database 

Country No. of nodes No. of nodes with unique 

geographic coordinates 

Germany 1 294 539 7 034 

France 1 804 905 10 696 

Poland 228 893 1 859 

 

We are well aware that this table only provides a rough estimation of the size of a resolution domain. 

On the one hand, the figures presented above are an overestimation since multiple ISPs/ASes are 

active in the same country, the dataset may contain false positives and the applied geolocation might 

be inaccurate. Also, ISPs can adopt individual rules as to where execution zones will be placed in their 
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network. On the other hand, we expect the number of execution points to increase. For example, 

Nokia Siemens Networks has commercialized its Radio Access Cloud Server [NOKIA-LA], enabling to 

deploy services on eNodeB base stations.  

 Zone Gateway 2.1.2

Four stakeholders are involved before the instances of a service are announced to the service 

resolution: the service provider, the orchestrator, the zone gateway (as part of the  zone manager) 

and the service resolver. In this deliverable, we focus on the interaction between the latter two: zone 

manager and service resolver.  

2.1.2.1 Intermediate between service resolver and service instance 

To allow clients to discover and connect to a particular service instance, the endpoint of that 

instance as well as instance state (e.g. load) are advertised by the zone gateway to its service 

resolver. This endpoint is the tuple (IP, port) that the service resolver will answer to a service 

request.  Service resolvers can then advertise this information, possibly in aggregated or obfuscated 

form, to resolvers in other domains.  

Rather than having individual instances report directly to a service resolver, the FUSION consortium 

makes the explicit choice to have the zone gateway in control of this process. This is motivated as 

follows: 

• Zone load balancing. Load balancing across multiple instances is an essential component in 

any cloud infrastructure today. By exposing a single public IP, all traffic for service replicas is 

routed through this load balancer, allowing for elasticity through up- and downscaling. 

Moreover, common load-balancers perform additional zone orchestration tasks like 

detecting unhealthy instances, auto-scaling and SSL termination. Since instances will be 

provided with a private IP address, it is not possible to have service instances retrieve their IP 

and port via introspection and announce it themselves to the service resolution domain
2
.  

• Zone orchestration policies. The zone might be operated by a different entity than the 

service resolution domain and may want to hide the number of instances actually deployed, 

e.g. not to expose internal scaling policies. Moreover, by keeping the zone manager in charge 

of the instance state advertisement to the service resolver, its orchestration capabilities are 

enhanced. For example, the zone could apply an on-demand instantiation policy and 

advertise service availability although no actual instances are deployed until the time the 

service is actually invoked. 

• Resolver layer scalability. Having each individual service instance injecting state into the 

service resolution layer would cause a large amount of traffic. The zone gateway can 

aggregate state information across all its instances and send a summary to the service 

resolver. 

The zone gateway reports two types of information to the service resolvers: 

• Utility function: this is a metric that is service-specific and reflects the user QoE in terms of 

network performance metrics. Higher values will result in more requests being resolved to 

that instance.  

• Session slots: to accommodate for the large heterogeneity of service performance metrics, 

the FUSION consortium has decided to adopt the generic metric of session slots (as 

introduced in D3.2). Session slots reflect the total number of concurrent sessions a particular 

instance can handle.  

                                                           
2
 Some cloud providers, targeting the most demanding services, provide instances with a public interface that is 

directly connected to the Internet [SOFTLAYER]. 
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2.1.2.2 Instance state aggregation 

Multiple instances of the same service can be running in a single zone. Each instance will report 

monitoring information to the zone manager. Although in principle the individual instances can be 

exposed to the service resolution layer, in most cases it can be expected that only one public 

endpoint (e.g. IP/port of load balancer) is advertised, as this provides more flexibility for instance 

scaling. Consequently, it is the responsibility of the zone gateway to process the individual instance 

load information to one aggregated number of available session slots.  The aggregation function to 

be applied is determined by zone orchestration policies and by the service provider, since the 

number of available session slots is not always the simple sum of the available slots advertised by 

each running instance. In practice, the zone gateway must account for the slots that can be provided 

by the maximum number of instances that could additionally be deployed. In case of composite 

services, the zone gateway needs to account for the sharing of (resource) session slots between 

multiple services. This is further explained in D3.2. 

2.1.2.3 Instance state reporting 

Session slots and utility functions only reflect a snapshot of monitoring information that will be 

rapidly out-of-date. To improve the resolution capabilities, we therefore mandate that zone 

gateways also advertise a histogram of service session times. This will allow the service resolution 

plane to forecast the evolution of session slots.  

2.1.2.4 Trust relationship between zone gateway and service resolver 

As explained in the previous section, for reasons of scalability and policy enforcement, the FUSION 

consortium has decided that the service resolver must receive service availability information from 

the zone manager and not directly from the service instances. The corollary of this decision is that 

the service resolver cannot assume a trust relationship with execution zones that are owned by a 

different party. 

We have identified three different security threats that may impact the service resolution: 

Security threat: fake service availability advertisement 

What?  

Execution zones must attest that they have obtained the binary of a particular service, otherwise 

malicious execution zones could advertise false service advertisements, leading to denial-of-service 

for the users as they are resolved to non-existing instances
3
. 

Mitigation? 

One possibility is to only accept service registration from a predefined list of zone gateways. 

However, this provides no absolute protection against hijacked zone gateways. 

Some ICN approaches use self-certifying names, where the receiver can verify the integrity of the 

downloaded content. However, as FUSION targets remotely running services instead of 

downloadable content, self-certifying names are not sufficient as they do not guarantee 

authentication. 

One promising approach is to apply the Packet Level Authentication mechanism [PLA11]. The sender 

adds an own header to packets, containing the sender’s cryptographic identity, certificate from the 

trusted third party, signature over the packet and other fields. Using this information, other nodes 

can verify the integrity and authenticity of the traffic origin. This mechanism can equally be used for 

                                                           
3
 This would lead to service unavailable errors (cf. 404 error code in HTTP). There is also the threat that clients 

receive the IP/port of a malicious instance. However, clients can always attest the authenticity of the 

instance they connect to using existing certificate-based security mechanisms like SSL/TSL. 
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signalling messages. Applied to FUSION, service resolvers could use PLA to challenge execution zones 

by sending a challenge to the public locator that is exposed by the execution. The execution zone 

must then respond with an authentication packet that has the challenged signed by the service at 

hand. Because such packets can only be generated by legitimate instances, the zone gateway proofs 

that it executes the running service by forwarding this packet unmodified to the service resolver. 

Security threat: SLA violation 

What? 

Zone gateways have interest in announcing better service performance statistics (e.g. more session 

slots, better utility), as this will increase their chance of requests being resolved to an instance 

hosted in their execution zone.  

Mitigation? 

In contrast to the previous security threat on fake service advertisement, signing the report 

messages by the instance is not an option, as the zone gateway is responsible for aggregation and 

advertisement to the service resolver. 

If clients report back on their RTT to the service resolver, these figures can be compared with the 

utility function and the network metrics that have been collected by the service resolver. If large 

and/or repeating anomalies occur that cannot be attributed solely to the status of the transport 

network, the service resolution plane could penalize such execution zones and resolve clients to 

other execution zones. 
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3. MULTI-DOMAIN SERVICE RESOLUTION 

In this section, we identify the need for policy enforcement when the service resolution layer is 

composed of multiple resolution domains. Policies can also be enforced by other entities  involved, 

like the zone manager, the orchestrator or the service provider. Based on study, we are able to 

provide the basic operational principles and protocol requirements for multi-domain resolution. This 

section discuss the multi-domain resolution from a more general perspective. More details 

concerning multi-domain service resolution are discussed in section 6.2. 

3.1 The use of policies in service resolution 

Throughout this section, a policy is understood to be a rule that governs the selection of a service 

instance. As will be specified later, such rules may apply directly to service requests or to the 

information exchange that takes place between service resolvers to build their own forwarding 

tables (we thus differentiate between resolution which operates on per-request basis from the 

construction of forwarding and resolution tables which operates at different time-scale and is not 

directly related to particular service requests).  

In the following we discuss the main motivations that the different actors may have to enforce their 

policies and how these motivations impact the service resolution. Based on this we define top-level 

requirements for policy enforcement mechanisms applicable at the protocol level of the FUSION 

service resolution plane. 

 Aspects 3.1.1

In general, players that are involved in providing different functions defined by the FUSION 

architecture may be interested in having a degree of control over the process of service resolution. 

Their objectives and the desired degree of control may depend on many factors.  

3.1.1.1 Roles 

We first identify the different roles in the FUSION resolution. These roles will drive many 

motivations, important requirements and respective protocol-level mechanisms. 

The main roles that can influence the inter-domain service resolution are listed below. We also 

provide exemplary motivations each role may have to enforce service resolution policies. 

Originating service resolution domain – service resolution domain that is the home domain for a 

service requestor (client or service instance). Exemplary underpinning principle for a policy that 

this role may have is network traffic engineering and/or the preference to resolve requests to 

instances hosted in other domains to save data centre resources. Apart from defining own 

policies, an originating service resolution domain may have incentives to act on behalf of other 

roles (e.g., domain orchestrator) and achieve some objectives thus contributing to the overall 

fulfilment of these external policies. Exemplary motivations for the latter are: 

• benefits from having agreements with clients, service providers and domain orchestrator, or 

remote (e.g., trusted) service resolution domains to provide adequate network performance 

statistics of the scope of its domain, 

• benefits from having agreements with clients or domain orchestrator/service provider to 

provide service resolution based on end-to-end network performance 

The above motivations are not exhaustive and their relative value will depend on the domain in 

question. 

Terminating service resolution domain – service resolution domain having control over a subset 

of execution zones where instances of requested service are hosted. Exemplary underpinning 

principles in this case are similar (after appropriate adaptations) to those listed above for the 
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originating service resolution domain. Nevertheless, it is possible that business models specific 

for this role (if any) may also result in incentives that will be unique to it. 

Intermediate service resolution domain – service resolution domain that forwards service 

requests between the originating and terminating domains. The main reason for the introduction 

of such domains is to support aggregation of resolution information to improve the scalability of 

the resolution layer. Another reason may be to enable network-based selection in presence of 

transit network domains that otherwise would not be covered by the originating and/or 

transiting domain. Intermediate domains will mainly enforce policies requested (injected) by 

other domains to improve the quality of the selection process due to their enhanced view of 

network state. A closer study on this role, the validity of respective incentives and potential 

impact on service resolution mechanisms and also on the FUSION architecture is left for the next 

period of the project (note that aggregation resolvers are mentioned also in section 6.2). 

Orchestrator and service providers.  Service providers are expected to define a lot of policies 

and many of them can refer to service instance selection process, for example regarding service 

access rights based on user attributes. According to the FUSION model, service providers are 

positioned outside the service selection/resolution loop and are supposed to delegate policy 

enforcement to the orchestrator. In the following we thus consider orchestrators as aggregating 

points that enforce the policies on behalf of respective service providers. The following may be 

additional motivations for an orchestrator to participate in the resolution process: 

• enforcement of specific/complex policies difficult to achieve otherwise, e.g. in a distributed 

way at the service resolution level  

• hiding confidential information that is needed for policy enforcement. 

We note that each party involved in the resolution process for a given request may wish to enforce 

its own policy for this request. In section 3.1.2 we generalise this to formulate corresponding 

requirements for inter-domain service resolution and in section 3.2 we propose a set of mechanisms 

that fulfil these requirements. 

3.1.1.2 Objectives 

We assume that policies, including their measurable objectives, are typically private in the sense that 

they need not be communicated explicitly to other parties (roles). Nevertheless, parties undertaking 

particular roles may have to rely on other parties to assure that the measurable objectives of their 

policy are met. To this end a party may decide to expose its expectations in the form of requirements 

and delegate the enforcement of these requirements to other party (parties). We refer to such 

requirements as publicly measurable objectives. An example of this mode of operation is when the 

orchestrator attempts to assure a certain level of QoS (e.g., maximum delay, minimum bandwidth, 

etc.) for a given type of service and to achieve this, the service resolution domain notifies the 

network control/management plane to reserve network resources necessary to satisfy the demand. 

Conversely, non-public (or private) measurable objectives are not communicated per se, but instead 

parameters related to the service are exchanged between parties involved in service resolution to 

define the allowable scope for subsequent decisions. In this case, information describing the 

capabilities of particular domains to be used by other parties is exposed rather than explicit 

requirements for them to meet. This may include both non-functional characteristics such as 

network cost/performance or service cost/performance guaranteed/achievable in a given resolution 

domain, but also functional characteristics like client address/location or a recommended list of 

execution zones/service instances, etc. In case such capabilities are exchanged during the service 

request resolution process they are said to define context of the request. 

It should be stressed that the two generic approaches just mentioned, i.e., requirement exposition vs 

capability exposition, are complementary with respect to each other. It is also important to note 
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that, in the area of network performance provisioning, the FUSION consortium has decided to focus 

mostly on capability exposition mode of operation. 

 Basic requirements 3.1.2

Below, we propose top-level requirements related to the use of policies for inter-domain service 

resolution in FUSION. These requirements are partially derived from the discussion provided in 

section 3.1.1 above, but are also inspired by useful and quite universal functionalities employed in 

solutions known from other research domains as content delivery, e.g. [FPLS13] [PDBR14]. These 

requirements will be used in section 3.2 to identify a set of protocol-level mechanisms that enable 

policy-based service resolution in  the FUSION architecture. 

R1: For each party (or role as of section 3.1.1.1), there must exist a possibility to enforce its own 

policies that have impact on the results of service request resolution. 

In principle, there are two complementary options to achieve this goal. One option is for a party to 

rely on other party(ies) and delegate the enforcement of desired policies to such external partner(s) 

(e.g., this could be done via dedicated interfaces using agreed notation to describe the rules to be 

implemented). The other option is for a party to get itself involved in the resolution process and 

enforce desired policies on its own. 

R2: Each party must have a possibility to protect confidential data (i.e., not to be shared with other 

parties) when enforcing their desired policies. 

One way to fulfil this requirement is to directly involve the interested party in the resolution process 

so that it can enforce policies on its own. In technical terms, this means that such a party should 

operate as a service resolver. This gives a clear indication of the mechanisms that should be available 

to the orchestrator. 

R3: There should be some degree of support for composite services. 

We note this requirement applies to intra-domain resolution as well, and that composite services 

define a complex case where policy enforcement may often require the use of centralised logic.  

At present, we have identified two options of how service resolution of composite services can be 

handled in the orchestrator layer or in the service resolution layer: 

• finding the appropriate orchestrator module that is aware of the composite service graph 

structure: such a module would work as a  terminating service resolution with enhanced 

logic for orchestrating composite services. The main role of the service resolution in this case 

is to find this orchestrator module, which acts as an oracle, pass to it the parameters needed  

and deliver the oracle’s response back to the requestor.  

• finding a set of atomic service components under a given set of (service-dependent) 

constraints by the service routing layer itself. This requires that the service graph structure is 

injected in the composite service routing layers.  

Section 9 contains an initial discussion on the complexity of resolution for composite services in both 

options. A deeper study of the role of service resolution in supporting composite services is planned 

for the next reporting period in the project. 

3.2 Protocol-level mechanisms 

We are interested in the mechanisms that the FUSION service resolution layer must provide to 

support different players in their policy enforcement tasks. In general, two types of such mechanisms 

can be distinguished on protocol level: 

• out-of-band mechanisms apply to the information exchange between parties/domains that 

takes place outside of the service request resolution process. This information is 

disseminated independently from the execution of service request resolution tasks and 
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allows service resolvers to build their own forwarding and resolution table that subsequently 

is used by them on per-request basis for the resolution purposes, 

• in-band mechanisms (per-request mechanisms) are used during the phase of resolving 

individual requests sent by clients and are built into the service request resolution protocol. 

The information exchanged to resolve a given request can be reused for subsequent 

requests, too (similar to the caching of DNS responses by DNS resolvers). 

In an ideal case the set of related protocol-level mechanisms should be limited. For reasons of 

scalability, this applies in particular to in-band mechanisms.  

 Out-of-band enforcement 3.2.1

Out-of-band enforcement mechanisms will typically consist in filtering the information to be exposed 

in the resolution protocol to neighbouring domains. For this purpose appropriate rules can be set in 

service resolvers to control the level of detail of the information exchanged. In such a case, a 

dedicated API can be used to allow external function (orchestrator and/or service resolution domain 

provider) to deploy desired policies in service resolvers. Although the details of such an API are out of 

scope of this report, it is nevertheless expected that most often they will have no impact on the 

routing protocol. Altogether, no specific protocol-level mechanisms will be required to deploy a wide 

variety of policies for off-path enforcement procedures. We note also that off-path enforcement as 

considered here supports requirement R1 as applied to the orchestrator and service resolution 

domain provider. 

It may turn out that in case of certain off-path rules some form of standardisation may be needed, 

e.g.  when rules for policy enforcement have to be implemented in a coordinated way across 

multiple service resolvers (service resolution domains). Such coordination among service resolution 

nodes may imply the introduction of appropriate protocol mechanisms. However, at current stage of 

development of FUSION we consider this option to be theoretical and postpone further studies in 

this area until a real need for the introduction of such coordination is identified. 

Advantages: policies are enforced only in service resolvers so some (typically significant) part of the 

required processing effort can be done outside the fast (request forwarding) path. Also, the service 

resolution signalling can take shorter (optimised) paths compared to the case where the orchestrator 

has to be involved in the resolution process. 

Disadvantages: depending on the policy, trust concerns may arise when implementing third-party 

policies; sensitive information may have to be exposed to the service resolution plane which may rise 

additional trust concerns. 

 In-band enforcement 3.2.2

In-band policy enforcement assumes that each interested party is involved in the resolution process 

on a per-request basis. To support this capability it is necessary to provide mechanisms for in-band 

invocation of policy enforcement parties and for in-band exchange of information to be handled by 

policy enforcement rules. In the context of FUSION we identify preferred schemes for these two 

types of functions. 

3.2.2.1 In-band invocation mechanisms 

In-band invocation allows to trigger an action of a party interested in applying its policies to a given 

request. We consider two basic mechanisms to enable this functionality, namely resolution hints and 

orchestrated request forwarding. 

Resolution hints mechanism, similarly to routing hints proposed by other frameworks, e.g. [SAIL13] 

and [NDGK12], uses a dedicated API to allow service resolvers consult the orchestrator in deciding 

what action to perform regarding a given service request. On one hand, this mechanism potentially 

provides the orchestrator a great flexibility in enforcing desired policies. On the other hand, it 
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requires the introduction of a dedicated information model that will be shared by the orchestrator 

and service resolvers. Although this solution may prove to be desirable in the long term, we prefer in 

the current stage of the project a more lightweight approach as described below. We note that the 

use of resolution hints allows to meet requirements R1 and R2 as applied to the orchestrator. 

Orchestrated request forwarding simply assumes passing service requests to the orchestrator based 

on predefined criteria. In this case the orchestrator plays a role of a specialised service resolver and 

depending on the policy to be enforced it either forwards the request to the next-hop service 

resolver or sends it back to the resolver who triggered orchestrated forwarding. In the latter case, 

service resolvers that trigger orchestrated forwarding may have to implement additional 

mechanisms to cope with such requests being sent back by the orchestrator. Thus, the operation of 

this scheme resembles to the one found in IMS at the interface between S-CSCF and application 

servers to trigger services [WZKC13]. We note that orchestrated forwarding allows to meet 

requirements R1 and R2 as applied to the orchestrator (so in many cases it can be equivalent to 

resolution hints described previously); it may also contribute to fulfilling requirement R3 provided 

that orchestrator is capable of coordinating composite services (such a model would resemble the 

one adopted in [NGSO11] for the service composition function). 

Advantages of orchestrated forwarding: fulfilment of requirements R1 and R2 regarding the 

orchestrator role so many trust concerns can be eliminated; ability to implement complex policies. 

Disadvantages of orchestrated forwarding: service resolution signalling can take long paths and thus 

have a negative impact on service resolution delays; adds complexity to service resolvers and to 

orchestrator. 

3.2.2.2 Information exchange 

Information exchange involves two interrelated issues to be solved, namely the pattern for passing 

signalling messages among the parties and the general form of the information to be actuated upon 

by the parties involved. 

The design decision in FUSION is to adopt a simple scheme for the selection of appropriate service 

instances based on the use of candidate (or ranking) lists that contain execution zone identifiers or 

service instance identifiers, possibly depending on the type of the message (request, answer). A 

general idea is to use a candidate list (ranking list) that is passed within the request/answer along the 

signalling path to negotiate the final choice of service instance among the parties. Given this scheme, 

the results of policy enforcement decisions are exposed during the resolution phase in the form of 

current composition of the candidate list attached to the resolution messages. Of course, additional 

rules for this negotiation may be needed, e.g., the list may not be extendible and at most one 

instance may be suspected to be chosen as a final result of the resolution. Appropriate conventions 

applicable to this process will be subject by the FUSION consortium to further studies. We note the 

use of candidate lists contributes to fulfilling requirement R2. 

Advantages: relies on information that by definition is standard for FUSION service resolution so 

certain trust concerns can be limited; simple form, able to support a wide range of different policies; 

can be combined with different triggering schemes; helps to avoid the dissemination of excessive 

amounts of service state information in case it may change very frequently (late binding effect) or in 

case of low-popularity services. 

Drawbacks: may be unable to express certain complex policies; can increase signalling traffic and rise 

processing requirements due to the use of (potentially long) candidate lists. 

3.3 Principles of operation 

In this section we present basic principles of the operation of FUSION service resolution layer in the 

multi-domain scenario. Throughout this presentation, the use of the mechanisms defined in section 
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3.2 is assumed to enable policy enforcement especially during the resolution phase. Therefore we 

take the particular perspective of service request resolution to organise the discussion that follows 

and consider its two following aspects: 

• domain of resolution, i.e., the domain where the decision about the selected service instance 

is taken for a give request 

• collection and exchange of information needed for multi-domain service resolution. 

Both of the above aspects are discussed in the following subsections. We note that we assume 

relatively high level of abstraction here as the goal of this section is to provide basic concepts for 

multi-domain operation of FUSION service resolution layer. Selected interdomain aspects of service 

state exposition and query resolution are described in more detail in sections 6 and 7, while the 

description of the protocol adopted by FUSION for resolution purposes is provided in section 8.  

 Domain of resolution 3.3.1

We found the two simplest (extreme) cases of service resolution scenario to be when the resolution 

decision is taken either in the domain of the requesting client or in the domain of the best instance 

of the service being requested. These two cases are illustrated in Figure 3 and Figure 4 respectively. 

 

Figure 3: Resolution in client domain. 

The main steps of resolution in client domain are shown in Figure 3. It can be seen that in this case 

the domain that hosts service instances (represented by service resolver SR2) is not involved directly 

in the resolution process (although domain SR2 disseminates the information on service availability 

and on session slots and thus indirectly impacts local decisions taken by SR1). It is also to be noted 

that in this basic scenario network-level information is gathered by resolution domains (SR1 in this 

case) on their own using all available means provided by the network exposition interface (see also 

section 5). The overall result is that domain SR1 is able to resolve to the best instance on its own 

based on the information gathered outside of the resolution process and possibly applying policies 

that are known locally. 

Resolution in best instance domain (see Figure 4) defines the opposite case to the above and it 

leaves the final decision regarding instance selection to the terminating resolution domain (SR2 in 

this case). In general, the role of the originating domain SR1 in this scenario is not null as SR1 can 

decide upon the terminating domain in case when multiple terminating domains are available (not 

show in the figure). We note that in the latter case the decision taken by SR1 may well be policy-

based. Moreover, message forwarding rules of the resolution protocol may allow the response from 
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SR2 to the client to also be forwarded through SR2. As we will see later in this section, this feature 

enhances the set of available options for policy-based service request resolution. 

 

Figure 4: Resolution in best instance domain. 

 

The two basic scenarios described above can of course be generalised assuming the use of the 

candidate list mechanisms introduced in section 3.2. A generalised scenario where both originating 

and terminating domains as well as the orchestrator are involved in the resolution process is shown 

in Figure 5. 

 

Figure 5:  General resolution scenario with candidate lists. 

In this scenario, resolution primitives are forwarded among the resolvers and additionally they are 

sent to the orchestrator. In each step a list of candidate service locators is exchanged between 

respective entities so that each of them may apply its policies to the list. The result of applying a 

policy is exposed in the form of the set of potential choices (candidates) available for the next 

resolution step. Actual conventions that should apply while changing the candidate list is an open 

topic, but we note that in other frameworks (e.g., SIP/SDP for codec negotiation) it is often assumed 

that the initial choice can be narrowed down and never extended in subsequent steps. We also note 
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that the communication between service resolvers and the orchestrator can be based on either a 

dedicated API (routing hints) or the resolution protocol itself, but it seems that the actual form of this 

communication is not critical. What is important, this capability effectively resembles to redirection 

mechanisms in other protocols (e.g., HTTP and SIP). 

 Collection and exchange of information 3.3.2

The information to be advertised across service resolution domains can relate to services (e.g., 

service slots, histograms) and to network paths that can be used by connections between clients and 

service instances. 

Session slot/histogram advertisement for the inter-domain scenario is discussed in more detail in 

section 6.  

As explained in more detail in section 5, the primary model adopted by FUSION to cope with network 

level performance during service resolution and orchestration builds on the use of network distance 

information provided by systems external to the FUSION platform. Nevertheless, there may arise 

situations when service resolvers do not have sufficient information about network costs. For 

example, this may occur for certain services that are served in very distant domains and when 

available network proximity systems lack or do not provide this information. In such a case some 

form of support from FUSION service resolution layer for the exchange of related information may be 

helpful. However, this rises practical concerns as explained below. 

Theoretically, the exchange of network proximity information within service resolution layer can  be 

done either out of band or in band (during the resolution process). We note that from the service 

resolution perspective, to be useful such information has to be very specific. One possible solution 

assumes announcing metrics related to well-known gateways (or landmarks) that would serve other 

domains as reference point to enable them reasoning about actual end-to-end costs between clients 

and service instances. For example, referring to Figure 3, in order for resolver SR1 to be able to 

derive the end-to-end network path cost (e.g., delay) from client C1 towards service Si the following 

would be necessary:  

(a) service resolver SR2 would have to announce to SR1 actual cost from each gateway G1, G2 to 

each zone (location) Z1, Z2,  

(b) for each location Z1, Z2, resolver SR1 would have to know actual gateway that handles traffic 

forwarded from C towards Z1 and Z2, and  

(c) only based on a) and b) could SR1 calculate the actual cost from C to Z1, Z2.  

We note also that the detailed information to be exchanged will depend on the resolving domain and 

the direction of traffic flows. Overall, we believe that exchanging network level information within 

the service resolution layer in the multi-domain scenario increases implementation complexity of 

service resolution plane and may raise scalability concerns. Therefore we defer deeper studies on 

this topic until a sound use case is identified to justify the introduction of this option. 
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4. SERVICE RESOLVER 

Figure 6 presents an overview of the different functional blocks of one service resolver, together with 

the interfaces exposed by these elements.  

 

 

Figure 6: Functional decomposition of the service resolver 

The core functionality is provided by the service request forwarding table; which is queried when a 

service request is received via the query interface. For each tuple (client IP, service ID), the 

forwarding table specifies one of the following actions: 

• Resolution: the service resolver will answer the query with an IP/port tuple of the selected 

service endpoint. This endpoint is used as destination address by the client when establishing 

a data plane connection to the service. 

• Forward: The next service resolver to forward the request to, in case the request cannot be 

served within the service resolution domain. 

The forwarding table is populated by the mapping component, which takes various inputs into 

account: 

• Network State: this module builds a database that tracks network metrics on the end-to-end 

path between client IPs and execution zones and network topology information.  It takes 

input from the network state exposition interface. This interface is discussed in section 5. 

• Service Availability: services are identified by service ID. For each service, this module tracks 

the availability and current service load per execution zone. This interface is discussed in 

section 6. 

• Service Resolution Policy: the orchestration layer (discussed in D3.2) can configure specific 

resolution policies via the corresponding interface. Service Resolution policies may impose 

restrictions on the network path between client and service instance, like geographic 

restrictions, minimum bandwidth or maximum latency. Policies can also be related to 

deployment and orchestration, e.g. favour specific zones, or on total service performance, 

e.g. maximum latency including network latency and service response time).  
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• Network Routing Policy: configured via the corresponding interface, these policies are 

related to the underlying transport network (for example traffic engineering). 

Lastly, the service resolver may expose information on service instances running in its execution 

zones to service resolvers running on other domains. The advertisement of such information is 

subject to orchestration and/or resolution policies, as discussed in section 3. 
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5. NETWORK STATE EXPOSITION 

In theory, service resolution nodes can use a broad range of network-level parameters for running 

resolution algorithms. Packet delay, loss rate, bandwidth and prices can be mentioned as the most 

popular metrics. 

Estimation of most of those parameters requires the collection of network monitoring information in 

real or near-to-real time which itself is a non-trivial task. Collected data sets will typically comprise 

information about network topology and network state (router status and load, link status and 

utilisation) to build network maps of ISP domain. Topological and routing information within domain 

can be retrieved from IGP protocol. Annotations like link utilization and other metrics can be 

gathered using SNMP. BGP information can serve to find egress points for traffic while Netflow or 

similar tools can help identify ingress points so that actual network paths for all prefixes can be 

determined. Moreover, the above information can be augmented utilising performance maps of own 

domain obtained using passive probes or from active tools based on, e.g., OWAMP and/or TWAMP. 

The above tasks apply in principle at the level of a given domain where the access to respective 

information can be enabled relatively easy for organisational purposes. Therefore, to complement 

the overall network view, performance maps obtained from other ISPs or third parties, e.g., RIPE 

Atlas, can be used to extend the coverage of network maps beyond the own domain of an ISP. 

Theoretically, gathering and processing all needed information (from raw measurements to 

information directly used by the resolution procedures) can be done by the service resolution layer 

on its own. We note however that from the point of view of actual resolution procedure/algorithms 

network information presented at relatively high abstraction level is sufficient. Therefore, and 

considering the emergence of IETF standards for dissemination of network level information, we 

propose the use of ALTO protocol [APYA14] at the interface between FUSION service resolution layer 

and network monitoring for network state exposition. 

Depending on policies and/or the feasibility of specific information, service resolvers may require 

that information directly used for resolution purposes be available at different levels of granularity. 

Desired objects to describe are execution zones, services, service instances, but also aggregates such 

as sets of execution zones or sets of clients. We note that ALTO provides great flexibility in terms of 

both type and granularity of information for annotated network maps. In particular, the concept of 

Provider-defined Identifier (PID) seemingly covers all the above requirements in terms of granularity. 

Similarly, ALTO cost maps define one-way connections between pairs of PIDs and provide a great 

freedom in defining the semantics of annotations. Although ALTO protocol is based on HTTP and 

JSON which may rise performance concerns, we believe this need not be a key aspect for FUSION. In 

fact, one can always adopt the implementation to cater for actual constraints and even define more 

lightweight notation similar to, e.g., DNS. 

Lastly we note that similar information as the one needed for service routing should also be available 

to the orchestrator for deciding on service instance placement based on network metrics. Adoption 

of ALTO also in this case makes it a perfect solution for network state exposition within the whole 

framework of FUSION. 
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6. SERVICE STATE EXPOSITION 

In order for the service resolution to make informed choices regarding service selection, service 

resolvers need to have several pieces of information: service availability per execution zone and 

network performance data. Service selection will run an optimisation algorithm which will try to 

maximise user quality of experience and minimise operators’ costs. Here we deal with the service 

specific data. 

6.1 By application components  

After a set of service instances is instantiated in an execution zone, the zone manager is responsible 

to inform the local service resolver. This involved passing several items that will then be selectively 

propagated in the resolution system. A crucial concept is that of "session slot”. This is a common 

measure to any service that quantifies “serving one user”.  

The following data is passed between the execution zone and the local resolver: 

• Number of currently available session slots 

• Number of currently used session slots 

• A distribution, in form of an histogram, of service times of the sessions running in that 

execution zone. This will be potentially used for resolvers to forecast what will be near future 

usage of a given service and choose an instance that minimises blocking probability (and load 

balances more efficiently) 

• The utility function of the service regarding quality of experience. This is a function of metrics 

like end-to-end delay and/or available bandwidth. The values of the utility vary between 0 

(the best) and -1 (the worst). 

6.2 Multi-domain service state exposition 

In order for resolution to work across several domains resolvers need to organize themselves in an 

overlay. Here we explain how the process works: 

1. Each domain has a logically centralized resolver that answers queries from the domain’s 

clients, receives registrations from endpoints inside the domain and interacts with resolvers 

in other domains to exchange service instance availability. We refer to this exchange as 

routing. 

2. A domain will typically be equivalent to today’s Autonomous systems. If an AS is too big it 

can break it in several domains. Finally, domains can consist of federated domains between 

several organizations or providers where they have similar network characteristics to the rest 

of the world. We expect this last feature to reduce the total number of resolvers visible to 

the rest of the world. 

3. After a new service instance gets registered in its local resolver, this information will be 

propagated to other domains. After this process finishes, clients will be able to resolve 

names to locators. We detail the routing process first and then the resolution process. 

4. Resolvers can connect to any resolver in the Internet. They are not constrained by layer 

3/BGP connectivity. This can happen for the exchange of routing information and forwarding 

of resolution queries. They need to find, through another mechanism (email, website, face-

to-face) at least one address of another resolver. Resolvers will have an ID and a public key 

associated with them. 

5. Routing consists of two distinct steps: Catalogue sharing and service subscription. 

6. Catalogue Sharing: In Catalogue sharing each domain advertises that it has a new service 

available. This information consists of serviceID, utility function, representative locator and 

resolver locator. The utility function will define the characteristics of the service, the 
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representative locator will allow other locators to assess the potential performance of 

connections to instances running in that domain. The resolver locator will allow other 

resolvers to connect and subscribe to updates from that service. In case of larger domains, 

multiple locators can be advertised. 

7. The Catalogue can be propagated directly (to resolvers that are directly connected), or 

forwarded through a multicast/spanning tree. The former raises less trust issues but the 

latter produces less traffic and allows for a resolver to only need to know of one other 

resolver. Note that this information is not very dynamic. An update is only sent when a new 

service is created, all the service instances have been deleted or there are significant changes 

in network connectivity (e.g. change of traffic engineering policy). It does not generate new 

updates every time a service instance is created. 

8. The propagation of Catalogue information can further be optimized by not propagating 

information to domains where the service utility would be minimal (e.g. availability of a 

service that requires 10ms delay should not be propagated to far away domains).  

9. Service subscription: Whilst receiving Catalogue messages, resolvers decide if they should 

subscribe to routing updates from a given service from a given domain. They will try to 

contact close domains before and obtain enough diversity of service availability. They will 

expand the subscriptions until enough instances are found. Note that potentially they will 

have to connect to every other resolver in a full-mesh. These should be in the order of 

10,000s, which a modern operating system can cope with. Moreover, the routing functions 

of a resolver can easily be parallelized. Yet another way to reduce the number of 

connections/relationships would be the existence of resolvers run by neutral organizations 

that aggregate routing information and make resolving decisions on their behalf. These could 

be run by a myriad of types of organizations: top-level domain administrators, non-profit 

organizations, cooperatives or a new business entity. Note, however, that incentives issues 

would arise. 

10. After subscribing to a given service, a resolver will start receiving updates from that service in 

that domain. This will include service slot information and the locator(s) for which the name 

is mapped. A flag detailing if the resolution can be done locally or remotely is also included 

(more on this below). These locators can be of different types (see Appendix A) including the 

locator of the resolver (and not final instance) in the case of remote resolution. 

11. Service resolvers must either propagate service availability information (possibly after 

aggregation) received from their neighbours or register in the catalogue as “proxies to other 

domains” so that requesting domain resolvers can subscribe to them for routing updates in 

usual way. 

12. By the end of the process, every resolver should be able to deal with any query for any 

existent service through the resolution process. 

13. Resolution: Resolution takes place when a client wants to resolve a name to a locator. It can 

happen in two ways: Locally (in the client’s domain) or remotely (in another service 

resolution domain closer to the best service instance). 

14. As mentioned before (in section 3.3.2), resolvers are equipped with the capacity of assessing 

network distances to any IP address in the Internet. This decision will take into account: the 

service utility function, the location of the user and the traffic cost in reaching all potential 

instances. 

15. In local resolution (cf. Figure 3) the resolver selects the best service replica and returns 

immediately the resulting locator to the client. Local policies may be applied during this 

process. 

16. In remote resolution (cf. Figure 4) the resolver chooses to which resolver to send the query 

and forwards it. At the other end the remote resolver will decide which instance to return 

which gets then returned to the user. It may apply its local policies for the selection as 

described in section 3. The origination resolver can also restrict the choices that the remote 

resolver returns based on its local policies. 
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17. Clients have the option of restricting even further the results (by specifying extra QoS 

constraints in requests) and to receive multiple locators. Applications can make use of these 

to achieve resilience, or parallelism. 

6.3 By service endpoints/clients 

Our architecture includes client quality of service experience as a feedback loop that can help for 

better service selection. This can improve the accuracy of service resolution, in particular because is 

server specific unlike many other network data, but it is not necessary for the resolution to take 

place. Resolvers have a plethora of other mechanisms to obtain this information. 

After clients use the service they send performance information to their local resolvers. This consists 

of observations between locators for a given service and corresponding final metrics like goodput, 

loss and delay. The information is similar to that sent by RTCP [RTCP] but sent to the resolver rather 

than the end system. It should be noted that the use of QoE feedback is an optional feature and not 

essential for FUSION, but will provide a useful user point-of-view of actual performance to augment 

monitored network metrics. 

There is an incentives issue here since this will require service developers to provide this information 

through our interface. We believe that more accurate resolution will be a strong enough incentive. 

We are also aware that QoE reporting can be faked. Resolvers may have to apply statistical tests to 

remove outliers. 
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7. QUERY 

This interface implements the main primitive of the service resolution layer. Using this interface, 

clients can request the best matching service instance by name. The actual data communication is 

service-specific and completely agnostic to FUSION. 

7.1 Service ID Namespace 

The FUSION service resolution layer will resolve a service ID to an IP/port tuple that is publicly 

addressable. The service ID identifies the endpoint of a service, as defined in the service manifest by 

the service provider or orchestrator and advertised by the zone gateways. 

Obviously, the service resolution will have multiple endpoints per service name, at least one per 

execution zone that hosts the service. But there is also no unique mapping between a particular 

locator to the corresponding service name. Consider an atomic service that is advertised as SID_A, 

but that is also defined as the endpoint of a composite service with identifier SID_B. In this case, the 

IP/port tuples of the instances of this particular atomic service will be mapped from both SID_A and 

SID_B. 

The FUSION resolution layer operates on a flat name space for service IDs. Hierarchical name 

structures, as e.g. proposed by Van Jacobson [VST09], are based on organizational structures, folder 

structures, etc. However, such naming schemes introduce fixed interdependencies that are avoided 

by flat name spaces. In our view, service IDs should be independent from any hierarchical 

organization, as they will be used to refer to instances running in any zone of any service resolution 

domain.   

However, although the service resolution layer does not assume any hierarchy in the service name, 

the use of hierarchy by service providers (e.g. starting each name with their domain name) is not 

prohibited but will be transparent to the service resolution layer. 

Although flat name spaces do not allow for name aggregation by service resolvers, we argue that the 

impact of using flat namespaces on the scalability of the FUSION service resolution layer is limited: 

• There is no resolution authority that must be queried for a particular service ID. Each service 

resolver that knows the locator of an instance that matches the service requirements may 

answer the request. The list of registered locators can differ per service resolution domain. 

This is in contrast with DNS, where each domain name is governed by a particular 

authoritative name server. Other DNS servers cache resolution answers, but ultimately the 

service ID is always resolved to the same IP address
4
 mandated by the authoritative name 

server. The FUSION service resolution layer is conceived in a different way, where each 

service resolution domain has the autonomy to resolve service IDs to different instances.  

• Flat names allow the use of hashing techniques for look-up operations in the forwarding 

tables of service resolvers. The population of these forwarding tables by the service request 

resolution algorithms is decoupled from the look-up operations and thus does not stall the 

request resolution. 

7.2 Resolution policy 

Some services will not be available in all domains and corresponding requests will have to be 

resolved to an instance in a remote domain. There are different options regarding the authority for 

service request resolution and the actions a service resolver can take to process a service request. 

                                                           
4
 When DNS load balancing is used, other name servers might cache only part of the aliases. However, all these 

aliases are provided by the authoritative name server. 
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Below, we discuss these different modes of operation that are supported by the FUSION service 

resolution layer, in decreasing order of generality: 

1. Requests can be resolved by any service resolver in any domain 

This is considered as the default operation mode of the service resolution plane. Service resolution 

domains advertise service IDs, locators (IP/port) and load information to other (remote) domains. For 

such services; service resolvers can resolve received requests to service endpoints advertised by any 

execution zone, even in other domains.  

In this scenario, service endpoint advertisements can be cached by service resolvers in other 

domains which improves the stability of the service resolution plane. The main challenge to be 

overcome is that information on service availability may be inaccurate or out-of-date. 

2. Requests can only be resolved in a particular domain 

If a service resolver in domain A resolves a request to an instance hosted in domain B, the service 

requestor will in most cases subsequently connect to the selected instance and consume network 

and execution zone resources. For this reason, a service resolution domains might prefer to keep 

better control of the resolution of requests to instances within their domain. 

The most straightforward way to achieve this is to simply not advertise service instances to other 

domains. However, this reduces the service consumption in contracted execution zones as no traffic 

from clients in remote domains can be attracted. Instead, the FUSION service advertisement 

interface must support this “only-local-resolution” policy by allowing to only advertise the availability 

of a particular service at a more abstract level without specific locators. This forces server resolvers 

to forward the request to the advertising resolution domain, as they have no information on the 

exact locators but are only provided with a list of candidates, as explained earlier in section 3.3.2. 

3. Requests can only be resolved at the selected execution zone or by a service component 

Some services might prefer handle instance selection internally, rather than relying on the FUSION 

resolution plane.  One relevant use case is cloud gaming, where the performance of candidate 

instances must be evaluated against service-specific criteria (e.g. using evaluator service) and the 

service provider wants to keep control of intra-zone resolution.  

In the most basic scenario, the FUSION resolution plane is only used to resolve the request to a 

locator of this service-specific orchestrator module. However, the FUSION resolution plane may 

provide additional functionality, e.g. by sending the request to the zone with the lowest latency.  

7.3 Invoke 

The default operation mode of service requests is to return the locator (or a list of locators) of the 

best instance by service resolvers. In this mode, the request message is never received by the service 

instance itself and the client establishes a data connection out-of-band of the FUSION service 

resolution plane. 

Another mode of operation is to directly send a message to an instance of the specified service ID. 

This avoids an additional round-trip time and extends the functionality provided by the FUSION 

service resolution plane.  An example scenario is a cloud gaming service that wants to perform its 

own service choreography. Using the invoke mode of the query message, the request is resolved to a 

suitable zone and directly delivered to the service endpoint. The service choreography component 

can then immediately return the list of locators of the selected components (note that such a 

choreography component could be thought of as a special service-specific resolver). 

  



Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms 

Page 28 of 71

 

Copyright © FUSION Consortium, 2014 

8. NSRP PROTOCOL DESIGN 

This section provides an overview and motivation for the new Networked Services Resolution 

Protocol: NSRP 

 

We analysed the potential advantages and disadvantages of deviating from DNS style based protocol 

towards a text based protocol like HTTP 1.1 ( HTTP 2.0 also moved towards a binary based protocol). 

After careful consideration we decided to stick with a binary protocol for the following reasons: 

 

� The data being exchanged contains only limited amount of text (the names being 

subscribed. The majority of the data consists of IP addresses, IP prefixes, ports, options 

and flags. Binary representation reduces the amount of data being transferred. This 

comparison also applies if we compress both options. Compressing text based data can 

achieve similar data sizes when large amounts of data are exchanged in the same 

message. This only happens occasionally in our architecture (typically in bootstrapping a 

resolver with service name/address data). 

 

� Parsing can be a significant overhead for resolution servers. The amount of 

requests/subscribes can be significant which will increase the processing requirements of 

resolver software.. It will also introduce extra processing delay, especially if a message 

needs to be forwarded to several resolver. 

 

� Less errors: As stated in [HTTP2], binary protocols  "are much less error-prone, compared 

to textual protocols like HTTP/1.x, because they often have a number of affordances to 

help with things like whitespace handling, capitalization, line endings, blank links and so 

on. For example, HTTP/1.1 defines four different ways to parse a message; in HTTP/2, 

there’s just one code path." 

 

We also considered the use of REST/HTTP: Although REST/HTTP provide advantages for application 

developers they incur a significant overhead in data transmission and processing time with no 

benefits for name resolution. 

 

The biggest disadvantage of a binary protocol is human readability and ease of debugging. Given that 

name resolution is conceptually placed between the application and network we don’t see any need 

for human readability. Debugging can be solved with a purpose built tool like a Wireshark plugin. 

 

The protocol consists of the following messages with several options  which are further detailed in 

Appendix A. 

 

1. REGISTER/UPDATE: Used by a Zone Manager to advertise to the local resolver the existence of 

one or more service instances. The message is sent to the local resolver and is continually 

updated 

2. SUBSCRIBE:  Used by resolvers to subscribe to service updates from other resolvers. It is also 

used to request Catalogue Information. 

3. QUERY: Used by a client to convert a name to one or more locators. This message may be 

propagated to other resolvers. 

4. DATA: Data containing mappings from name to locators. It is sent in response to a SUBSCRIBE 

(both Catalogue and Service subscription) or to a QUERY 

5. QoE REPORT: Messages issued by the clients to report quality of experience. This should serve  as 

input to service instance selection 
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6. HELLO: Initial message exchanged by resolvers to authenticate themselves 

7. ERROR: Error message sent in response to a QUERY, SUBSCRIBE, REGISTER, QOE REPORT or 

NETWORK_DATA_REQUEST 

 

Before we embarked in defining a new protocol we analysed if DNS could not be used to achieve our 

goals. Here we compare our protocol with two other possibilities:  unchanged DNS and a potential 

extension of DNS that changes the server to server protocol but keeps intact the client to server part. 

 

NSRP Features DNS DNS in clients; modified 

server to server protocol 

Name to Locator Resolution 

of arbitrary name spaces 

Not possible Possible with some 

restriction on names (63 

bytes between “.”s and only 

letters, numbers and the “-“ 

symbol. 

Replica management, load 

balancing 

Not possible Possible but without ability 

of service being able to 

specify utility function or use 

histogram 

More complex locators Some combinations are possible (for example SRV RRs allow 

for port numbers). More complex result, like containing 

more than one IP address would require new RRs to be 

defined) 

Dynamic updates to client Not possible Not possible 

Direct invocation Not possible Not possible 

Client restrictions on results Not possible Not possible 

Authentication at source Not possible Not possible 

 

 

As can be seen a substantial set of features cannot be obtained with any of these two possibilities. A 

small subset, however, can be implemented by maintaining the client-to-server interface which be 

used as temporary deployment strategy. 
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9. RESOLUTION ASPECTS OF COMPOSITE SERVICES 

Composite services are registered via their manifest, specifying the individual components to the 

orchestrator layer. In this section, we want to discuss the impact of composite services on the design 

and implementation of the components involved in service request resolution.  

In section 9.1, we discuss the implications on the zone gateway. The zone gateway can assume a 

service resolution role when instances of each component are available in the same zone. We also 

highlight the advertisement of session slots for composite services.  

Although we can safely assume that the zone gateway can interact with the zone manager and thus 

has access to the structure of the composite service, a more fundamental design decision is to what 

extent this service graph should be known to the service resolver, as to support composite services 

across execution zones. This is described in section 9.2. 

9.1 Zone gateway 

The zone plays an important role in the advertisement of composite services, as well as in the 

scenario of dynamic service graph deployment in a single zone, where multi-configuration service 

components are reused across multiple composite services. The latter functionality creates a more 

open service ecosystem with run-time chaining of components developed by service providers.  

 Advertisement of composite service availability 9.1.1

The zone gateway is responsible for the advertisement of service availability to its service resolver. In 

D3.2, we introduce the notion of service session slots. Instances of a service component not only 

report resource session slots (determined by the number of available resources and the number of 

running connections), but also service session slots, reflecting how the available resource session 

slots are allocated over the different configurations for this instance.  

Hence, the service availability that must be reported to the service resolvers are better reflected by 

the number of service session slots. For atomic services, this number can be calculated as described 

earlier in section 2.1 by summing the numbers reported by each instance. The situation is however 

more complex for composite services. Consider a composite service that comprises service 

component A and service component B. In this case, the number of session slots to be reported is the 

minimum of the available session slots for service A and for service B. Another complexity is that one 

the serving of one incoming client connection could require multiple session slots (e.g. a composite 

service that requires two decoders). Clearly, the zone gateway must take into account the service 

graph that has been provided in the service manifest. 

 Zone-internal resolution 9.1.2

In Figure 7, four service components are involved in three composite services. Service component A 

has been configured with two session configurations (A-B and A-C). As explained in D3.2, the two 

service configurations of service component A has been mapped onto different ports. Depending on 

which port a client connection is received, service component A will request the zone gateway, who 

assumes the role of service resolver, for the locator of an instance of service B or an instance of 

service C. Hard-wiring actual instances would limit the orchestration flexibility and deployment 

resiliency (e.g. when a component fails), especially for long-lived sessions. Moreover, this would 

prohibit dynamic scenarios where components are added to and removed from the service graph at 

runtime. 

In the remainder of this section, we discuss two different patterns of data connection between 

service components that must be supported by the zone gateway. The discussion is supported by 

Figure 7. It is important to stress that the arrows on this figure indicate the data flow between 

components. Service requests to the zone gateway are not depicted.  
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Figure 7: Patterns for the flow of data across service components 

On the left side, service component A contacts the zone gateway for each session. Depending on 

which the port the client connection is received, component A will request the gateway for an 

instance of component B or component C. The main advantage of this scenario is that it allows for 

fine-grained resolution per session for a composite service. The zone gateway must only take into 

account the number of available resource session slots (although it must still map these to service 

session slots for advertisement to the service resolver). The management of service session slots is 

handled by the zone orchestration layer.  

On the right hand side, we show a different orchestration pattern for connecting instances. In the 

ambassador pattern, proxy components manage the load-balancing between replicas of the same 

component. This pattern is heavily used in the emerging container-based virtualization solutions like 

Docker, where it is currently the de facto standard to connect two containers that run on different 

hosts of the same execution zone (data centre). In this scenario, the instance selection process 

comprises two steps: 

• First, the zone gateway will return the proxy IP/port for the requested service component. 

• Second, the data connection will be load-balanced to one of the instances. Load-balancing is 

handled per-service.  

Given the relevance of this deployment scenario, we must support it in the FUSION architecture and 

implementation. The main challenge here is that the proxy only performs basic load-balancing and 

does not take into account service characteristics or the location of the requesting component. In the 

example of Figure 4, the proxy for service component C does not take into account whether the data 

connection is originating from an instance of service A or an instance of service D.  
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Figure 8: Multiple proxies for the same service 

A possible solution is to group the different instances behind multiple proxies (e.g. one proxy per 

node on which the instance is deployed). In this case, the zone gateway takes an intermediate role 

and selects the most appropriate proxy, rather than the most appropriate instance. The drawback of 

this scenario is in the tighter coupling between the zone gateway and the zone orchestration layer. 

9.2 Composite service resolution 

As described in section 3.1.2, we discern different architectural options for composite service 

resolution: 

• The service resolution layer returns a list of all instances  

• The service resolution layer is unaware of the service graph. This means that each service 

component individually requests the next instance in the service graph, leading to potential 

suboptimal deployment.  

In the latter case, the composite service graph must be injected into the service resolution layer (one 

possible option for doing this is to use redirections/routing hints sent to the orchestrator as 

suggested in section 3.3.1, Figure 5). This graph describes the individual components of the service 

(e.g. service ID) and their interconnection with a possible cost metric.  Introducing the service graph 

into the service resolvers however entails bringing additional complexity for the forwarding process. 

For each component, the service resolution must select the optimal instance.  

When the service request resolver receives a request for a composite service, it needs to create the 

corresponding instance graph from the deployment graph. An example is shown in Figure 9. In this 

example, the composite service exists of four service atoms A-D, with service atom A serving as the 

endpoint for clients to connect to. 

 

Figure 9: Composite service with four atomic services 

When a request arrives for the composite service, the service resolver builds the service graph 

shown in Figure 10. At the time of the request, there are two available instances for atomic services 

A, B and D, while there is only one instance available of atomic service C. The service resolver must 

now determine the most appropriate subgraph, that contains exactly one instance of each atomic 

service. In general, shortest path algorithms cannot be applied since there is not necessarily a single 
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source and single sink node. Moreover, the order and size of the instance graphs rapidly increase 

with the number of instances of each atomic service. If N instances of atomic service A and deployed, 

and M instances of atomic service B, then the graph will contain NxM edges since in principle each 

instance of B can be reached from any instance of A. 

 

 

Figure 10: Service resolution must pick the best combination of instances 

One possible heuristic is to keep the service graph transparent to the service resolver. In such a 

scenario, the service resolver would always return the instance with the lowest cost from the 

requesting client. Referring to Figure 10, the service resolver would first return instance A1 to the 

client. In turn, this instance would be routed to instance B1, and this instance would in turn be 

resolved to C1, resulting in a total instantiation cost of 28 (10 + 15 + 3). However, the lowest 

subgraph consists of (A2, B1, C1) and has an instantiation cost of 23 (15 + 5 + 3). This example shows 

that this heuristic may rapidly lead to increased instantiation costs, especially for more complex 

services. 
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10. INTRA-DOMAIN ROUTING BASED ON SESSION SLOTS 

In this section, we describe the progress of a dynamic instance selection algorithm for a single 

resolution domain, which considers both network path cost and instance capacity cost (service 

session slots). Upon request arrival, our selection algorithm now aims to minimize the bandwidth 

usage by finding the shortest path to a server.  

We also start the work on the interaction between the service resolution layer and the orchestration 

layer. If network congestion occurs, it is preferable to have the orchestrator redistributing the 

current number of running instances rather than scaling up additional instances.  

 Problem description 10.1.1

We are looking into a resolution service for a single domain which assigns each request to a network 

path and service instance. In the current status, we assume one single service resolver that has 

access to monitoring information on any instance running in an execution zone of this domain, as 

well as to detailed network path statistics, in particular the current bandwidth usage on links.  

When no available path or service instance is found, the service request is rejected by the resolution 

service. The main objective of our research is to minimize the amount of rejected requests and serve 

as many users as possible. 

To ensure that our selection algorithm only selects paths with available bandwidth and service 

instances with more than one remaining session slot, we construct a service availability graph upon 

request arrival. This graph only contains network edges with sufficient bandwidth for at least one 

additional service session. We then consider all service instances which have at least one session slot 

available and for which we can find a path to the client in the availability graph. This guarantees that 

at least one path with sufficient bandwidth can be found from the client to any of those execution 

zones. Using this availability graph we can implement selection algorithms in a simple manner. 

Consider a network graph containing edges E, nodes N, services S and service instances M. Client 

nodes are denoted �� 	⊂ � and execution zones are modelled as (server) nodes in the graph which 

are denoted �� 	⊂ �. The collection �� 	⊂ � contains all service instances of service s ∈ S, which 

are running in the execution zones. Gj,s is 1 if server node j is hosting a service instance of service s, 

else it is zero. Each edge e ∈ E has a total bandwidth capacity Be and Be,t denotes the available 

bandwidth on time t. Each service instance m ∈ M has Pm session slots and can thus serve this many 

clients at the same time, while Pm,t denotes the number of available session slots at time t. When a  

service request r is served, this incurs a bandwidth consumption Wr on the path between client and 

execution zone, and requires one session slot of the selected instance. 

Upon request arrival at time t, our selection algorithm must find a network path where all edges 

have Be,t ≥ Wr and Pm,t > 0. We aim to minimize the bandwidth usage by searching for the shortest 

possible paths. 

 Selection algorithms 10.1.2

1. Shortest Path Only: A first approach algorithm constructs a service graph containing all edges of 

the original network ignoring the available bandwidth capacity of the network. We then search 

for the shortest path between the client and the closest server node with an instance that has at 

least one session slot available. If that path does not have sufficient bandwidth available 

(considering all other active connections) for the actual bandwidth required for that service 

request, the request is rejected. This simple approach does not make use of alternative longer 

paths and creates many network bottlenecks which could be avoided by distributing traffic over 

several paths. 
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Input: Request r for service s from client c. 

Output: Network path L from client c to service instance m running on server node j. Or an empty 

path if the request is rejected. 

Pseudo code: 

L ← EMPTY; 

minLength ← INFINITY; 

For each service instance m in Ms do { 

 if (Pm,t > 0) {	

  d(c,j) ← shortest path between client c and server j hosting instance m; 

  if (length(d(c,j)) < minLength) { 

   L ← d(c,j); 

   minLength  ← length(d(c,j)); 

  } 

 } 

} 

For each edge e in d(c,j) do { 

 if (Be,t < W) 

  return empty path; // reject the request 

} 

return L; 

 

2. Equal distribution: We try to avoid bottlenecks by equally distributing the load induced on each 

edge and service instance. We start with the availability graph containing all edges and service 

instances in the network. For each incoming request, we look up the network path and service 

instance in the availability graph which induces the least variance in edge and instance load; this 

is the most even distribution. Using this equal distribution we aim to delay any bottlenecks until 

they can no longer be avoided because all available resources are drained. The disadvantage of 

this approach is the higher bandwidth usage due to the use of longer paths when a shorter path 

was still available. 

This algorithm goes as follows:  

Input: Request r for service s from client c. 

Output: Network path L from client c to service instance m running on server node j. Or an empty 

path if the request must be rejected. 

Pseudo code: 

L ←	EMPTY; 

bestScore ←	INFINITY: 

// construct the Service Availability Graph SAGraph 

SAGraph ← contains each edge e with Be,t  ≥ Wr 

Q ← list of all service instances m ∈ Ms with Pm,t > 0 for which we can find a path to client c in 

SAGraph 

 

if (Q is EMPTY) { 

 return empty path; // no path from client c to instance m available or no service instances with 

Pm,t > 0 were found. 

} 
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// Consider each service instance as final destination of request r 

For each service instance m in Q do { 

 serverUsages ← EMPTY; 

 For each service instance n in Q do { 

  serverUsage ← Pn – Pn,t; 

  if (m equals n) { 

   serverUsage  = serverUsage - 1; // m must also process request r 

  } 

  serverUsage  = serverUsage  / Pn; 

  serverUsages.add(serverUsage); 

 } 

 slotVariance = variance(serverUsages); // slot variance if m were to process request r 

	

 // now we calculate the network bandwidth variance for k-shortest paths 

 K(c,j) ← k-shortest paths between server j (hosting m) and client c in SAGraph 

 For each path p of K(c,j) do { 

  networkUsages ← EMPTY; 

  For each edge e in SAGraph do { 

   edgeUsage ← Be – Be,t; 

   if (e ∈ p) { 

    edgeUsage = edgeUsage – Wr; // e must carry request traffic 

   } 

   edgeUsage ← Be,t/Be; 

   edgeUsages.add(edgeUsage); 

  } 

  edgeVariance = variance(edgeUsages); // bandwidth variance if request r were to be 

forwarded on path p 

	 	

  // use slot variance and edge variance to find a weighted total variance 

  totalVariance ← α * slotVariance + (1-α) * edgeVariance; 

  if (totalVariance < bestScore ) { 

   bestScore  ← totalVariance; 

   L ← p; 

  } 

 } 

} 

return L; 

Shortest Available Path: this algorithm minimizes the bandwidth usage while using the service 

availability graph to find alternative network paths and service instances in case of congestion. 

Upon request arrival, an availability graph is constructed containing edges with sufficient 

bandwidth for that request. Next, we find all service instances with at least one slot available and 

for which there is a path to the client in the service availability graph. The request is assigned to 

the service instance which is closest to the client in the availability graph. Using this algorithm, 

every request is assigned to the closest service instance when no bottlenecks occur. When the 

shortest path is congested then the shortest alternative path is used. When the closest instance 

has no more session slots available, then the request is assigned to the closest alternative.  
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When there are service instances available but there is no path to the client in the availability 

graph, then all network resources are in use and we have a network bottleneck. When there are 

no service instances available then we have a server bottleneck. In any other scenario the 

Shortest Available Path approach will assign the request to the network path and service 

instance which minimize the bandwidth usage. 

Input: Request r for service s from client c. 

Output: Network path L from client c to service instance m running on server node j. Or an empty 

path if the request must be rejected. 

Pseudo code: 

L ←	EMPTY; 

minLength ←	INFINITY: 

// construct the Service Availability Graph SAGraph 

SAGraph ←	contains each edge e with Be,t		≥ Wr  

Q ← list of all service instances m ∈ Ms with Pm,t > 0 for which we can find a path to client c in 

SAGraph 

 

if (Q is EMPTY) { 

 return empty path; // no path from client c to instance m available or no service instances with 

Pm,t > 0 were found. 

} 

 

 

// Consider each service instance as final destination of request r 

For each service instance m in	Q do	{	

	 // since we only consider instances in Q we already know Pm,t > 0 

 d(c,j) ← shortest path between client c and server j hosting instance m in SAGraph; 

 if (length(d(c,j)) < minLength) { 

  L ← d(c,j); 

  minLength  ← length(d(c,j)); 

 } 

} 

// d(c,j) only contains edges from SAGraph so we already know Be,t	<	Wr	for	each	edge	in	d(c,j) 

return L; 

The Shortest Available Path selection algorithm assigns requests in an optimal manner as long as the 

total demand does not exceed the available resources. When a network or server bottleneck occurs 

and all alternatives are in use, selection alone will not suffice to improve the current condition. 

Network bottlenecks can be solved by deploying instances on different locations in the network and 

server bottlenecks can only be solved by adding additional instances or upscaling the existing 

instances. Therefore we developed a dynamic placement algorithm which attempts to reduce the 

amount of rejected requests by changing the current instance placement and configuration. 

10.2 Interaction between resolution and orchestration layer 

When a network bottleneck occurs there are still available service instances to process requests but 

these instances are not reachable due to congestion in the network. By placing this instance in a 

different location, away from the congested network area, it becomes reachable again and more 

requests can be processed. Similarly, when no instances have available session slots we can upscale 
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instances to process more requests or deploy additional instances. This requires an interaction 

between the resolution and the orchestration layer. We solve network bottlenecks by finding an 

appropriate location to deploy instances and we solve server bottlenecks by upscaling and deploying 

additional instances. 

This algorithm goes as follows: 

Input: The current service deployment configuration, including service instance locations G and 

session slot capacities P. 

Output: a list V of new deployment configurations, including service instance locations G and session 

slot capacities P. 

Pseudo-code: 

Case: most rejected requests were caused by network blocks 

Explanation: we assume that popular service instance(s) or other background traffic are creating 

congested hotspots in the network and we mitigate this by deploying instances in other areas in the 

network 

 

For each service instance m in M do { 

 Popi ← Wr * serviceTime * amountOfRequests; 

} 

Q ← list of all service instances ordered by decreasing popularity Popi 

For the first k service instances m in Q do { 

 s ← service of which m is an instance of; 

 K ← all server nodes j where Gj,s = 1; // current active servers for service s 

 L ← all server nodes j where Gj,s = 0; // current inactive servers for service s 

 j ← server in L which is averaged furthest away from all servers ∈ K; 

 Gj,s ← 1; // deploy an instance of service s on server j 

 V.add({G, P}); // add the deployment configuration G and session slot configuration P to 

possible solutions 

  

 y ← least popular service instance of service s based on previously calculated Popi 

 Gy,s ← 0; // remove the least popular instance to try and reduce server costs 

 V.add({G,P}); // add the deployment configuration G and session slot configuration P to 

possible solutions 

} 

 

// V now contains 2*k new solutions which should be evaluated 

 

Case 2: most rejected requests were caused by server blocks: 

Explanation: we upscale service instances which were unable to process the amount of requests while 

downscaling overprovisioned instances to reduce costs 

 

// First, we upscale the under provisioned instances to increase processing capacity 

For each service s in S do { 

 A ← average amount of rejected requests per second for service s; 

 if (A > threshold) { 

  m ← service instance of s which received the most requests; 

  B ← throughput m; // average amount of requests processed per second by m 

  slotsRequired ← A/B; 
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  Pm ← Pm + slotsRequired; 

 } 

} 

V.add({G,P}); // we add the new configuration after upscaling all the under provisioned instances 

 

 

 

// Next, we downscale the overprovisioned instances to reduce costs 

For each service s in S do { 

 A ← average amount of rejected requests per second for service s; 

 if (A < threshold) { 

  y ← service instance of s which received the least requests; 

  usedSlots ← average amount of requests processed per second by m 

  Pm ← usedSlots + α; // we only provision as many slots as received on average. α is a 

safety margin to avoid under provisioning this instance. 

 } 

} 

V.add({G,P}); // we add the new configuration after downscaling all the overprovisioned instance. 

 

// V now contains 2 new possible configurations 

10.3 Evaluation 

To evaluate these solutions, we run a simulation for each generated configuration. Each simulation 

uses the expected demand pattern as input. At the end of the simulation we are able to measure the 

amount of rejected requests as well as the total monetary cost of that deployment setup. We then 

use the most cost-effective configuration to configure the network. 

 Simulation Platform 10.3.1

Service selection and instance placement algorithms in FUSION must consider network constraints 

(edge bandwidth) and server constraints (session slot availability), both of which depend on the 

network topology and location of available execution zones. In order to evaluate the proposed 

algorithms on multiple network topologies with different characteristics, we developed a simulator 

to quickly perform these evaluations. This simulator combines existing frameworks to handle every 

aspect of the evaluation, from topology generation to event-driven simulation and presentation of 

results. Using algorithm hooks, users are able to run simulations using newly developed algorithms. 

We now describe the different aspects of the FUSION simulator. 

10.3.1.1 Generating a network topology 

Network topologies are generated using Brite [BRITE], a universal topology generator. This aspect of 

the generator takes a configuration file as input which describes the generation model to be used 

(flat or hierarchical AS/Router topologies) as well as network characteristics (node count, node 

connectivity, edge bandwidth, …). The result is a list of network nodes and a description of their 

connectivity.  Generating two topologies using the same configuration file might result in different 

topologies, though, with the same characteristics. 

We use four different topology types to evaluate the developed algorithms. These topology 

characteristics are described in Table 2. SS50 and SD50 represent two smaller topologies with sparse 

and dense connectivity respectively. LS200 and LD200 are two larger equivalents with the same 
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network characteristics. Using these four variations we study the performance of all developed 

algorithms under different network conditions. 

Table 2 – Network configuration of each topology type used in simulations 

 SS50 SD50 LS200 LD200 

#service resolvers 50 50 200 200 

#clients 5 5 20 20 

#servers 3 3 3 3 

Average outgoing 

edge degree 

1 5 1 5 

Avg. diameter 12 6 19 8 

Brite model Waxman AS Waxman AS Waxman AS Waxman AS 

 

The Brite model used to generate sample topologies is always Waxman AS. To illustrate, Brite uses 

the parameters presented in Table 3 to generate sample topologies of LS200 using this Waxman 

model. The parameter m represents the average outgoing edge degree from Table 2, while the 

amount of service resolvers from Table 2 equals N in Table 3. 

Table 3 – Brite parameters to generate sample topologies of LS200 

Parameter Value  Description 

Name  3  #Router Waxman = 1, AS Waxman = 3 

N  200  #Number of nodes in graph 

HS  100  #Size of main plane (number of squares) 

LS  10  #Size of inner planes (number of squares) 

NodePlacement  1  Random = 1, Heavy Tailed  = 2 

GrowthType  1  #Incremental  = 1, All = 2 

m  1  #Number of neighbouring node each new node connects 

to. 

alpha  0.15  #Waxman Parameter 

beta  0.2  #Waxman Parameter 

BWDist  1  #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential 

=4 

BWMin  10  Minimum edge bandwidth 

BWMax  100  Maximum edge bandwidth 

 

10.3.1.2 Constructing a FUSION overlay 

The topology generated by Brite has no knowledge of FUSION execution zones or clients. Therefore 

we convert the generated topology into a FUSION graph model which supports execution zones, 

service resolvers and clients. This graph model requires a user-specified configuration file containing 
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the amount of clients, execution zones, services and how many instances of each service must be 

placed. 

Initially, all nodes of the Brite network topology are added as service resolution nodes. Next, the 

simulator will assign the required amount of execution zones and clients to the network nodes. In 

order to increase the importance of the network characteristics we spread out execution zones and 

clients as much as possible, creating longer average paths towards the execution zones. 

10.3.1.3 Initial service placement 

The simulator attempts to place service instances on the assigned execution zones. This is the first 

algorithm which a user is able to specify as the initial placement has a big impact on the simulation 

results. Currently supported methods include: (1) randomized placement, (2) placing an equal 

amount of instances on each execution zone and (3) analysing an event tracelog to determine the 

best placement for the first batch of requests, assuming this placement is close to ideal for the entire 

tracelog. Next, we use the expected load to assign an initial amount of session slots to each service 

instance. The expected load can be derived from a tracelog provided by the user or must be specified 

as input parameter in case no tracelog is available. 

10.3.1.4 Running a simulation 

Once we’ve constructed a topology containing execution zones, clients and services, we prepare a 

simulation run. We use CloudSim [CBD11], a framework for modelling and simulating Cloud 

Computing infrastructures and services, to perform the event-driven simulations. We extended 

CloudSim’s data centre objects with logic required to send, process and forward service requests. 

CloudSim also contains a centralized broker object which we extended with the FUSION 

orchestration logic. This broker contains knowledge of the network nodes (service location, available 

slots, edge capacity, …) as dictated in the graph model. 

This modified CloudSim executable requires (amongst others) the location of the tracelog, location of 

the file containing the previously constructed graph model, a selection and placement algorithm as 

well as the amount of times the placement algorithm must be executed. 

The CloudSim broker reads the tracelog provided by the user to schedule each event on the 

CloudSim simulation. When the tracelog contains events for more clients or services than the 

number specified by the user in the configuration file from step 2, then the broker will aggregate 

events in the tracelog. N clients in the tracelog are aggregated into C equally sized groups, where C is 

the amount of clients specified in the configuration file. The same logic applies to the services found 

in the tracelog. This allows a tracelog to be used as input for simulations with any amount of clients 

or services. 

10.3.1.5 Sending a service request 

Every scheduled event from the tracelog triggers one of the client nodes to send a service request for 

the attached service name. This request is forwarded to the broker which executes the service 

selection algorithm provided by the user. This algorithm must select an execution zone with one or 

more session slots available for that service as well as a path from that client to the selected zone 

with enough bandwidth to carry the traffic for that session. 

The algorithm returns both the path and destination zone to the broker which then reserves these 

network and server resources for that session. The bandwidth on the selected path and session slot 

consumed by that session can not be used by consecutive requests until the client or server end the 

session. If no path with sufficient bandwidth or server with available slots for that service can be 

found, then the algorithm must alert the broker which will reject the request. 
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10.3.1.6 Evaluating the service placement 

When reading the tracelog to schedule service request events, the broker also calculates the time 

interval in between consecutive runs of the placement algorithm specified by the user. After each 

interval the broker will schedule a placement evaluation event which pauses the current simulation 

and triggers the placement algorithm to run. Any placement algorithm is able to use the broker’s 

database of measurements collected during the simulation up until the algorithm is executed. Using 

this knowledge, a placement algorithm is expected to generate alternative service placements by 

adding, deleting or changing the location of service instances, as well as upscale or downscale the 

session slots of any instance. The output is the amount of generated solutions as well as the location 

of the files containing the state of each solution. 

The simulator will then execute a partial simulation for each solution as starting placement, 

processing only requests which occur between the current time and the next scheduled placement 

evaluation. At the end of each partial simulation the results are gathered and used to calculate the 

profit gained if this placement were to be used until the next placement evaluation. The broker 

selects the best solution, makes the required changes to the current graph model to match the new 

service placement and continue the main simulation. 

10.3.1.7 Gathering results 

The simulator gathers statistics about the generated load, resources used, costs made and profit 

gained. This is done for each simulation run and multiple runs are combined into averaged statistics. 

This allows us to evaluate algorithms on multiple topologies using different configurations to find the 

overall best performing algorithm. 

 Service selection 10.3.2

The main goal of our algorithm is to minimize the bandwidth usage to reduce required resources and 

to maximize the amount of requests per second we can process to increase profit. We evaluate each 

selection algorithm by running a simulation on a network with 100 service resolvers, 5 execution 

zones, 3 client nodes and 4 services. We deploy 2 instances of each service on execution zones, 

which creates a total of 8 service instances in the network. 

We use a tracelog of Video-On-Demand traffic patterns, obtained through measurements by Orange 

France, to drive the simulation and generate request patterns for the clients. This tracelog contains 

data measured over 31 days and includes requests for 5700 objects coming from 9000 different 

clients. Figure 11 illustrates the amount of requests generated per hour for exactly two days in the 

tracelog. 
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Figure 11: CDN requests per hour of two days measured by Orange France 

Our generated networks only contain between 5 and 20 clients while the tracelog contains 9000 

client records. In order to use this tracelog for any number of clients, we group the total amount of 

9000 tracelog clients into X groups, where X denotes the amount of desired clients in simulation. For 

SS50 we require only 5 clients so all requests from the first 1800 client records will be seen as 

demand of client 1 in simulation, the next 1800 clients represent client 2, etc. We use the same logic 

to group the 5700 trace objects into the desired amount of simulation services. 

The result of this simulation includes the amount of rejected requests as well as the bottleneck which 

caused a request to be rejected. We wish to minimize both the amount of rejected requests and the 

bandwidth usage. 

Table 4 shows the performance of each algorithm. Using the Shortest Path Only algorithm we 

process the least requests, as expected, due to alternative network paths to servers not being used. 

The large amount of rejected requests renders this algorithm less suitable for practical use. The other 

two approaches perform almost equally well. Closest Available finds the shortest path with sufficient 

bandwidth available towards a service instance with available session slots. The Equal Distribution 

does also finds paths with sufficient bandwidth but does not prioritize the shortest path. Instead, it 

aims to have equal load on each path and service instance until all resources are full. Although both 

approaches allow an almost equal amount of requests to be processed, the Closest Available 

approach requires less bandwidth usage as it prioritizes shortest paths first. 
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Table 4: service selection results for all three selection algorithms 

Shortest Path Only  Rejected due to bottleneck in:   

   Network  Server  Processed requests  Bandwidth used 

   43458   20913   43841   1157875  

      

Closest Available  Rejected due to bottleneck in:   

   Network  Server  Processed requests  Bandwidth used 

   25061   26198   57066   2934105  

      

Equal distribution  Rejected due to bottleneck in:   

 Alpha α 

(used in variance) 

 Network  Server  Processed requests  Bandwidth used 

 0.0   24259   27081   56927   3154347  

 0.5   24551   26861   56849   3192334  

 1.0   25093   26251   56949   3039816  

 Service placement 10.3.3

The service placement algorithm in the orchestration layer comes into play when the available 

resources are insufficient to handle the current load, for example when too many requests are being 

rejected due to bottlenecks. A service placement algorithm aims to maximize the amount of 

requested requests by changing the service placement and server resources. If this was our only 

concern, we could deploy a service instance on each available execution point and configure each 

instance to have infinite session slots. While upscaling resources or deploying additional instances 

might increase the amount of processed requests, it also comes with a monetary cost. A trade-off 

must be found between the cost of deployed services and the profit made from processing requests. 

For these reasons we developed a cost model which accounts for the following costs: 

• Cost per Gbps: how much must the network provider pay for each Gb consumed on the 

network per second? 

• Provisioning cost: the price per second to provision a service instance on an execution point. 

This does not include session slot costs yet and the instance can not process requests 

without slots. 

• Cost per session slot: the price for the resources assigned to a service instance to process 

one request connection. 

• Profit per request: the money received for each processed request. 

By deploying more resources we can increase the amount of processed requests but this also induces 

more resource costs. It is up to the service placement algorithm to consider both profit and costs to 

find an optimal deployment. The solution which generates the most profit after deducting all costs is 

the best option and will be used to reconfigure the service deployment.  

Analysing the performance of our first approach algorithms is a difficult challenge as we generate a 

set of new deployment configurations and use an experimental simulation to try and evaluate the 

quality of these solutions. Further study is required to identify the problem in the current 

deployment solution and find the best solution which optimizes profits. 
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The reaction time of the service placement algorithm can significantly improve the profit made; the 

faster we remove bottlenecks in the network, the less requests will be rejected because of it. 

However, reconfiguring the service placement more frequently reduces the amount of information 

gathered on the quality of the active placement. This can lead to poor placement decisions and 

induce higher costs. 

Table 5: service placement performance in function of frequency 

 

Rejected due to bottleneck in: 

   Evaluations during sim.  Network   Server  Accepted  Bandwidth   Profit (€ ) 

0.0   16942   29464  62623  3615191  9074 

1.0   17959   25256  66220  3714794  9693 

2.0   17548   22534  69390  3729564  10341 

3.0   17468   20948  71373  3685925  10797 

4.0   18243   19868  71695  3762294  10808 

5.0   18261   20777  70822  3642196  10787 

6.0   17058   19474  73271  3783065  11146 

 

Table 5 contains simulation results in function of the service placement frequency. The more 

frequent we reconfigure the service placement the faster a bottleneck can be removed but also the 

less information our algorithm has to base its decisions on. We observe that the amount of accepted 

requests increases as we reconfigure more frequent, although the performance improvement is less 

than linear. The more frequent we reconfigure our deployment, the less profit we gain from this, up 

to the point where we barely notice any difference when reconfiguring between three or five times 

during simulation. 

Although these first results still require further study, we can already see that there is room to 

improve for the service placement algorithm. 

10.4 Future work 

Our current placement approach evaluates placement configurations by running simulations. This is 

a time-consuming process which means the reaction time of the placement algorithm is limited. On 

top of that, there is no guarantee that the generated configurations contain a solution for the 

problem which caused the bottleneck. 

In future work we will develop a method to accurately detect the cause of network or server 

bottlenecks. We then create a model to find and generate solutions to solve that problem. We will 

also evaluate new algorithms which combine both upscaling/downscaling and adding/removing 

instances, so that one solution can mitigate both server and network bottlenecks. 
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11. DYNAMIC INTER-DOMAIN RESOLUTION 

In this section, we first present a general mathematical model for the dynamic server selection 

problem. Then we show how to use this model in a practical application - the Source-to-Screen (S2S), 

a real-world cloud-based video processing service, according to the FUSION architecture. 

In general, the goal of the server selection is to direct user requests to suitable execution zones (EZs). 

In this work, we define a utility function corresponding to user satisfaction. In detail, we use latency 

between a user and an EZ as a metric to measure that user satisfaction. We focus on a multi-

objective optimization problem in which we first guarantee max-min fairness between users and 

then maximize the total utility of all users. We also consider a trade-off between the data transit cost 

(between resolution domains) and the performance (total utility) of users. We model the problem as 

a linear programming formulation. 

11.1 Problem description and mathematical model 

 Problem description 11.1.1

• Inputs: estimated user requests, network performance model (e.g. latency, link bandwidth), data 

transit costs and resource constraints (e.g. number of available session slots at each EZ). 

• Assumption: we use a centralized model in which each service resolver (SR) has all input 

information. Time is divided into fix-length windows, and the SR runs the optimization 

formulation at the beginning of each window time. Based on the results, we know how to map 

user requests to EZs. 

• Objective: maximize the performance (total utility) of users while achieving max-min fairness 

between users. The objective also considers the trade-off between the performance and the 

data transit cost.  

 Utility function 11.1.2

 

Figure 12: Utility function vs. response time 
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Figure 13: Utility function with different "k" 

As shown in Figure 12, the utility function should express the following meanings: 

• If �	  !"#$, users are very happy. Depending on service type, we can choose an appropriate 

value of !"#$. For some services, even if reducing more the response time cannot improve QoE, 

therefore the utility keeps the same value if �	  !"#$. For example, voice over IP requires 

!"#$ % 20	() [Wiki]). However, for other services like Web, the shorter the response time is, 

the better QoE the users get, so in this case we can set !"#$ = 0. 

• If !"#$ < �	  	!"*+: the utility value is positive, meaning that the users are quite happy. 

However, the user satisfaction is reducing when the response time is increasing. We call !"*+ as 

the expected response time. 

• If !"*+ < �	  	!",-: the utility value is negative but the QoE is still in an acceptable range. 

• If !",- < �: the utility value is .∞ meaning that we consider the service request is blocked. 

To satisfy the above requirements, we can define a utility function as follows (similar to but more 

complicated than the one in [NOMS08]): 

 0(1) % 	
234

52
 (1)  

where: 

! %	!"*+ . !"#$ and 

  (2) 

A constant 6	 7 	1 is used to indicate the importance level of the user request. Large value of k 

means that the request is less important. By changing the values of k, Rmin, Rmed and Rmax, we can 

control the shape of the utility function (Figure 13). 

 Optimization Formulation: Linear Program (LP) 11.1.3

The objective of the optimization formulation is to achieve max-min fairness between users while 

maximizing the total utility. The objective also considers the trade-off between the performance and 

the service deployment cost. The algorithm works in two steps:  

• Step 1: the objective function is to maximize the minimum user utility. In this step, we guarantee 

that the solution achieves max-min fairness between all users.  

• Step 2: after the first step, let the value of the objective be Umax-min. Then, in the second step, we 

add the following constraint to the formulation:  
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min (u) >= Umax-min 

By adding this constraint, the second step guarantees that the solution we find will be at least as 

fairness as in the first step. In addition, with the new objective: (9:	[< ∑0 . (1 . <)>?)@], the 

solution maximizes the total utility while considering a trade-off with the deployment cost (< is a 

parameter to say the relationship between the total utility and the deployment cost in the 

optimization objective). 

Inputs: 

• Estimated user requests: BCD: User “i” requests “d” session slots from service “j”. 

• ECD: link bandwidth required by user “i”  to get service “j”.    

• GCH: latency (response time) between user “i” and execution zone (EZ) “t”. 

• IH
D
: available capacity (session slots) of service “j” at EZ “t”. 

• JKILMHNH: unit bandwidth cost between user “i” at EZ “t”. 

• OPCQ
CD
, OPRB
CD

, OPST
CD

: three response time thresholds defined in Figure 12. 

• OCD %	OPRB
CD

. OPCQ
CD

 

Main variable: TCH
D
∈ [U, V] - fraction of user “i” connects to EZ “t” to get service “j”. We assume that 

user “i” is a set of individual users that are grouped by near geography location. 

LP formulation of Step 1: 

W",-3"#$ % (9:	W  (3) 

s.t. 

∑ :#X
Y

X∈�Z % 1		∀(\, ]) ∈ ^ (4) 

∑ _#Y:#X
Y
 X̀

Y
		∀]	 ∈ )a�b\>a, @ ∈ cd#∈ef*g   (5) 

�#Y %	∑ h#X:#X
Y

X∈�Z 		∀(\, ]) ∈ ^ (6) 

1#Y 7 0	∀(\, ]) ∈ ^ (7) 

1#Y 7 �#Y . !"#$
#Y
	∀(\, ]) ∈ ^ (8) 

0#Y %
2ij34ij

5ij2
ij
	∀(\, ]) ∈ ^ (9) 

W  0#Y	∀(\, ]) ∈ ^ (10) 

>?)@Xg,$f#X % ∑ ∑ kl`?)@#X#Y∈mX∈�Z n#Y:#X
Y

 (11) 

>?)@Xg,$f#X  `opq (12) 

:#X
Y
∈ [0,1]	∀(\, ]) ∈ ^, @ ∈ cd (13) 

Explanation: 

• Objective function (3): guarantee max-min fairness where U = min(utility) (as constraint 

(10)). 

• Constraint (4): all the requests of a user “i” for a specific service “j” have been served. 

• Constraint (5): each EZ has a limited number of available session slots dedicated for a service 

type. This may happen that some special services (e.g. need GPU processing) can only be 
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deployed at some specific EZs. This constraint is used to make sure the number of available 

session slots of EZ is enough to serve user requests. 

• Constraints (6) are used to computed the average latency for the user “i” to get the service 

“j”. Assume that the connection between users and EZs are a full mesh, it means that each 

user can connect to any EZs. For the inputs of the formulation, we simply remove all pairs of 

(user, EZ) that have latency which is larger than !",-
#Y

. This step guarantees that the latency 

for any user “i” to connect to any EZ “t” to get service “j” has to be less than !",-
#Y

.  

• Constraints (7) – (8) ensure that 1#Y 7 0	\r	�#Y  !"#$
#Y

, otherwise 1#Y 7 � . !"#$
#Y

. 

• Constraint (9) is used to model the utility function (1). Note that when �#Y  !"#$
#Y

, z can be at 

any value that is greater or equal to 0. However, thanks for the objective function, we would 

like to maximize the utility (9). It means that the formulation will choose a minimum value of 

z, or in other word, z is set to 0. Similarly, the formulation will choose 1#Y % �#Y . !"#$
#Y

 when 

�#Y 7 !"#$
#Y

. Moreover, as mentioned in the constraints (6), a feasible solution does not allow 

any response time that is larger than !",-
#Y

. In other word, we can say that when �#Y > !",-
#Y

, 

the utility function is –infinity. In summary, the constraints (6) – (9) model exactly the utility 

function as defined in (1) (or in Figure 12). In the formulation, a user is group of individual 

users. For simplicity, we consider all group users are the same. If users are with different 

group sizes, we can multiply the right hand size of (9) with a parameter corresponding to the 

size of the group user “i”. This helps to distinguish the group of users with different number 

of individual users. 

• As shown in Figure 13, in the negative region, with the same value of response time rij, the 

request with low “k” gives lower utility (we call it a bad request). As the objective function is 

to maximize the utility of the bad request, the formulation will try to increase the bad 

request’s utility by setting small value of rij for it. This intuitively means that the request with 

low “k” is more important. 

• Depending on the users and the service type, we can set the appropriate values of the 

important level “k”. Then, by playing with “k”, Rmin, Rmed and Rmax, we can control the shape 

of the utility function (Figure 13). 

• Constraint (11) and (12) limit the transit cost between service routing domains. As shown in 

[ZZG+10, XL13], the linear transit cost that we use in constraint (11) is a good approximation 

for the 95-th percentile transit cost. 

LP formulation of Step 2: 

(9:[<(∑ 0#Y)#Y∈m . (1 . <)`opq] (14) 

s.t. 

(4) – (13)  

W 7 W",-3"#$ (15) 

Explanation: 

In this step, we add the constraint (15), where U is the minimum utility of users and Umax-min is the 

objective value from step 1, to ensure that the solution should be at least as fairness as the max-min 

fairness in step 1. We keep the same constraints (4) – (13) and change the objective function as (14) 

where <	is a parameter to say the relation between the total utility and the cost. If we set < % 1, we 

get the solution with maximal total utility (while the cost is only restricted by the constraints (12)). 

On the other hand, if < % 0 the solution we get achieve max-min fairness while minimizing the total 

transit cost. 
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There is always a trade-off between the utility and the cost. In case the service provider know how to 

choose the value of <, they simply run the formulation as step 2 above and get the optimal solution. 

However, if it is hard to estimate <,	we have another way to give hint for the service provider to find 

a suitable solution. In general, given a solution, we can plot its cost and utility on a 2-D plane (Figure 

14).  

 

Figure 14: Trade-off between utility and cost.  

By setting < % 1 and < % 0, we can find two solutions called maxutility and mincost, respectively. From 

maxutility, we can get the corresponding cost called maxcost. Then, we set many STEP_COST points in 

between the range [mincost, maxcost]. Next step, in constraint (12), we set the value of COST to be 

equal to each STEP_COST point. We set < % 1 and find the corresponding total utility for each value 

of the STEP_COST point. Depending on the granularity of the graph and how much time we can pay 

for computation, we can choose a suitable number of STEP_COST points. Finally, we get a trade-off 

relationship of the cost and the utility as in Figure 14.  Based on this figure, the service provider can 

easily choose a solution with their desired trade-off. 

It is noted that the optimization formulation above is a linear programming model; hence it can be 

solved efficiently. The number of variables :#X
Y

 in the LP problem is |t| 	v 	 |q| 	v 	 |w| where |t| is the 

number of users, |q| is the number of EZs and |w| is the number of service types. Since  |q| and |w| 

are usually much smaller than |t|, the worst case complexity of the LP problem will be o(|t|x.z) 

[LPWIKI]. 

Relationship between server placement (WP3) and server selection (WP4) algorithms: 

The objective of the service placement is to find which service instances to be deployed in which EZs. 

Given this deployment, we know the actual session slots at each EZ. The server selection phase is 

based on these real resource constraints to allocate user requests to appropriate EZs. In general, the 

formulations that we used in the service placement and the service selection are quite similar. We 

list in below the commons and the differences between them. 

Similarities between service placement and service selection: 

• They share the same idea of utility function.  

• The algorithm works in two steps to achieve max-min fairness between users while maximizing 

the total utility. The algorithm also considers the trade-off between the performance and the 

cost. 

• The constraints in the optimization formulation are similar, except the ones relating to the cost 

(constraints (11-12)). 

Differences between service placement and service selection: 
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• The service placement considers the deployment cost of service instances in EZs while the 

service selection cares about the data transit cost between multi-domains. 

• The capacity constraints (5) in service deployment are about the capacity of the hardware 

resource at EZ. In service selection, these are the constraints on the available session slots of 

service instances in EZs. In general, the capacity of the service selection is less or equal to the one 

of the service deployment. 

The service placement is executed less frequently than service selection. In the service placement, 

we assume that a user can connect to any EZs. However, in the service selection, to reduce the input 

size for the optimization, we can assume that each user can only connect to a subset of EZs. 

 Preliminary results of the LP model 11.1.4

We present in this section some preliminary simulation results of the LP model for the service 

selection. We use the input dataset of the Massive Open Online Course application. In general, the 

dataset includes 2508 data centres distributed in 656 cities on over the world. To map them into the 

FUSION architecture, we call each city as an execution zone. The user demand is modelled as Poisson 

process and is proportional to the population of the cities. We manually set the number of total 

available session slots so that they are enough to serve all user demands. The latency between users 

and execution zones are collected based on the Haversine distance, the shortest distance between 

two points around the planet’s surface. We define the three latency thresholds Rmin = 20 ms, Rmed = 

50 ms and Rmax = 150 ms. All of these data and the cost can be collected from 

https://github.com/richardclegg/multiuservideostream. 

11.1.4.1 Trade-off between the total utility and the transit cost 

In step 2 of the algorithm, assuming that we do not know value of <, then we draw a graph to show 

the trade-off between the total utility of all users and the transit cost, which is explained in Figure 15.  

 

 

Figure 15: Trade-off between utility and cost 

The utility is computed in percentage in which 100% means all users can get their best QoE (latency 

is less than Rmin). As shown in Figure 15, the best utility we can achieve is 96%, which means that 

approximately 96% of the users can have latency which is less or equal to Rmin = 20 ms. From the 

Figure 15, with the budget (cost) of 420 (units), we can get the maximum utility. On the other hand, 

with a limited budget of 180 (units), 84% of users can get their best QoE. Using this graph, the service 
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provider can see the trade-off between the user utility and the cost and then they can choose the 

best operational point. 

11.1.4.2 The benefit of max-min fairness 

 

Figure 16: Latency of the worst user with and without max-min fairness 

 

Figure 17: Total utility with and without max-min fairness 

Figure 16 shows the comparison between the case if we consider max-min fairness (step 1 of the 

algorithm) and the case we simply maximize the total utility (ignore step 1 in the algorithm). The x-

axis is the interval of cost ranging from the maximum and the minimum cost, which correspond to 

each step in Figure 15. As shown in Figure 16, with the max-min fairness constraint, the worst user 

still can get a good QoE (latency is less than 25 ms) while without max-min fairness, some users 

suffer from high latency (but it is always less than Rmax). However, with max-min fairness, it can lose 

some benefits on the total utility and the cost. Figure 17 shows the comparison between the total 

utility with and without max-min fairness. The solution without max-min fairness can provide the 

best QoE for 98% of users, while it is 96% with the case of max-min fairness. On the other hand, with 

the minimum costs of 151 (units) and 40 (units), the total utility can be achieved are 83% and 94% 

with and without max-min fairness, respectively. Based on these simulations, we can see the 
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advantages of max-min fairness in guaranteeing good QoE for all users with a small penalty 

compared to the case without max-min fairness. 

11.2 Server selection within Source-to-Screen (S2S) application 

 Source-to-Screen application 11.2.1

To evaluate FUSION with a practical application we adapted Source-to-Screen (S2S), a real-world 

cloud-based video processing service, according to the FUSION architecture. S2S is provided by the 

British Association of Films and Television Arts (BAFTA) as a subscription-based service to film 

producers around the word who want to transcode their video files in formats compatible for video 

streaming. A typical service transaction involves three steps: 

• The upload of a video file from a user to the S2S servers 

• The processing of the input video file to produce a transcoded version of it. 

• The download of the transcoded video file back to the user. 

The uploading and downloading time depends on the size of the video files. Figure 18 shows the 

distribution of files sizes for the uploaded videos. The average file size has been 4.2 GB and the 

median 1.9GB. 

 

Figure 18: CDF of video file sizes uploaded to S2S 

The processing time depends on the frame rate and the duration of the video files. Figure 19 shows 

the distribution of total processing time. 
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Figure 19: CDF of the video processing time 

Figure 20 shows the user distribution. In 2014 S2S received 23,943 transcoding requests from 1,700 

different users across 48 different countries. About 50% of the users reside in the UK and in the US. 

 

Figure 20: User distribution 
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 Implementation of S2S within FUSION architecture 11.2.2

We implemented S2S on top of Amazon Web Services (AWS) cloud computing infrastructure, which 

provides the necessary components to capture the requirements of the FUSION service routing 

architecture. Figure 21 shows a high-level representation of the FUSION architecture. 

 

Figure 21: High-level mapping of S2S to FUSION architecture 

Each execution zone is a collection of physical computational resources in a specific location, such as 

a data centre. Each execution zone hosts a number of service instances that can handle a number of 

requests in parallel, depending on the allocated resources. The number of possible parallel requests 

corresponds to a number of session slots that are available. 

The service resolutions are responsible for routing client requests to the appropriate execution 

zones that can serve the request more efficiently. Service resolutions need to maintain information 

on the available session slots in each execution zone and monitor the network conditions between 

the clients and the execution zones. 

To implement the FUSION’s service routing we use the following AWS components: 

• Elastic Computing Cloud (EC2) offers the ability to lunch virtual servers at different geographical 

locations called EC2 regions. Therefore EC2 region is a concept similar to FUSION execution 

zones. Currently there are 9 different EC2 regions shown in Table 6 EC2 regions. Each EC2 

instance within a region corresponds to a service instance in FUSION. Each region has a limit of 

maximum number of EC2 instances that can be launched. The cost of each EC2 instance differs 

by region. 

 
Service 

resolution 
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Table 6 EC2 regions 

ap-northeast-1 Asia Pacific (Tokyo) 

ap-southeast-1 Asia Pacific (Singapore) 

ap-southeast-2 Asia Pacific (Sydney) 

eu-central-1 EU (Frankfurt) 

eu-west-1 EU (Ireland) 

sa-east-1 South America (Sao Paulo) 

us-east-1 US East (N. Virginia) 

us-west-1 US West (N. California) 

us-west-2 US West (Oregon) 

 

• Cloudwatch is a monitoring service for EC2 instances that allows monitoring metrics such as CPU 

utilisation, data transfers and disk usage. Cloudwatch is used by our service resolution 

implementation to calculate the available session slots at each execution zone. 

• Route 53 is a DNS service that allows implementing different types of routing including latency-

based routing, and geo-DNS. We use Route 53 to route the initial client requests to the closest 

service resolution. 

To implement the network monitoring required by service resolutions we use RIPE Atlas, a global 

network of probes that measure Internet connectivity and latency. Figure 22 shows the coverage of 

RIPE Atlas. We can see that Atlas provides a particularly good coverage for the countries where the 

majority of the S2S reside. We collect periodically measurements from Atlas probes within ISPs from 

where requests are received and we store the results in a MySQL database. The database is 

accessible by all the service resolutions and they use it to pull data on network latency between a 

client and each EC2 region. 

 

Figure 22: Coverage of RIPE Atlas vantage points 
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In AWS there is no concept similar to service resolution. To implement service resolution, we allocate 

an EC2 service instance at each AWS region to have the role of the service resolution. Initially a client 

RESOLVE request is routed to service resolution at the geographically closest region. Each service 

resolution receives from cloudwatch data on the available service slots of its own region and 

exchanges this information with the servicer resolutions at the other regions. 

Figure 23 shows the overall implementation architecture. 

 

Figure 23: Implementation architecture based on AWS. 

 Impact of service resolution policies on performance and cost of S2S 11.2.3

Figure 24 shows the results, in terms of overall latency and cost (processing cost on Amazon AWS), of 

selecting servers based on lowest cost, lowest network latency and randomly. Overall service latency, 

in these plots, has been calculated as the time from when a user submits a video file for transcoding 

to when the results are delivered back over the network. As the S2S service, as currently 

implemented, transcodes an entire file before delivering the result to the user an approximation has 

been made for a real-time transcoding service. The minimum number of frames that can be 

transcoded at once has been determined, depending on the type of video encoding. The total 

number of frames in the submitted video has been divided by this minimum to determine the 

number of chunks in the submitted video that could be processed in a real-time fashion. The total file 

upload time, total transcoding time and total file download time has been divided by the number of 

chunks to calculate the service latency plotted in the graph. 
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Figure 24: Impact of service resolution policies on S2S performance and cost 

The graph demonstrates that service resolution policy affects both cost and performance of the S2S 

service. Selecting on lowest cost reduces mean costs but at the expense of service latency and vice 

versa. The next step is to evaluate the performance of the optimised service resolution policy using 

the optimisation formulation as presented earlier in this section. 

We have implemented the server selection optimization model using CPLEX solver at each service 

resolution. The inputs for the optimization are collected by AWS components. For instance, the 

number of available session slots is collected from the Cloudwatch, the network metrics are from the 

network monitoring (RIPE Atlas). In addition, we have costs of data transit from different EZs based 

on different EC2 regions. After finding solutions, the server selection model stores the results in a 

forwarding table, which is used by the service resolution to direct client requests to appropriate EZs. 

Evaluation results comparing optimised service resolution based on a combination of service and 

network metrics with the single metric resolution policies (Figure 24) are currently being collected. 
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12. SERVICE RESOLUTION PROTOTYPE  

12.1 Emulation platform 

To evaluate the different service resolution algorithms, we are building an emulation platform on the 

Fed4FIRE infrastructure [F4F]. The final plan is to showcase a running prototype of multiple service 

resolution domains, with execution zones running on geographically distributed locations. The 

operational details of the emulation platform are explained in WP5. The table below lists the current 

status of different steps that must be taken towards this WP4 prototype. 

Action Comment Status 

Topology Network topology Available: 

• BRITE generator 

• CAIDA database 

Planned for 2015: 

• Ongoing discussions at Orange Poland to 

expose network topology details to the 

consortium 

Service demand Popularity of services over 

time (e.g. diurnal patterns, 

longer-time trends) and 

place. 

Available: 

• Poisson distribution 

• CDN trace from Orange France 

Planned for 2015: 

• Ongoing discussions at Orange Poland to 

expose demand patterns. 

Service Placement Placement of services in 

distributed locations, 

connected by network. 

Available: 

• Virtual Wall with network emulation 

Planned for 2015: 

• Deployment on PlanetLab and/or 

geographically distributed experimental 

facilities; using the Fed4Fire framework 

Request and 

resolution 

protocols 

Message type and syntax Available: 

• first version of interface specification  
• first version of message syntax 
• support for atomic services 
 
Planned for 2015: 

• incremental updates and refinements 

• support for composite services 

 



Updated specification of service-centric routing protocols, forwarding & service-

localisation algorithms 

Page 60 of 71

 

Copyright © FUSION Consortium, 2014 

12.2 Zone gateway 

The zone gateway is responsible for the advertisement of service availability to the service resolvers.  

  OpenStack extension for VMs 12.2.1

At this moment in the project, there is a first prototype available. This prototype has been integrated 

in OpenStack IceHouse. In the current implementation, the sum of all available session slots of 

running instances, plus the number of session slots that could be offered in addition by deploying the 

maximum number of instances allowed. 

This implementation allowed us to functionally evaluate the service resolver. The tight integration 

with OpenStack, because of the use of its Ceilometer monitoring framework, is however a drawback. 

Moreover, container support (especially Docker) is not available in the mainline software tree 

OpenStack and is not to be expected before the Kilo release in mid-2015. 

For this reason, it was decided to start from scratch with a new implementation of the zone gateway, 

that is independent from OpenStack.  

 DCA-compatible version 12.2.2

As explained in D3.2, the Data Centre Abstraction (DCA) layer is an adaptor layer between the high-

level FUSION zone manager and gateway; and the underlying DC and its corresponding DC 

management and orchestration (MANO) layer. 

At the time of writing, we are still in the functional analysis phase. Design requirements identified so 

far are: 

• operating on Docker containers 

• support for zone-internal service discovery, preferably building on existing tools like 

Consul.io or Apache Mesos. This will probably need an extension of the current DCA layer 

• interfacing with zone manager for composite service resolution support, especially the 

aggregation of session slots of individual instances that belong to multiple composite 

services 

• support for zone-internal composite service resolution, using the ambassador pattern (as 

discussed in section 9). 

• integration with load-balancers like HAProxy. This is challenging in the context of composite 

services, where the resource session slots of an individual instance must be mapped to 

session slots of multiple composite services. 

12.3 Service resolver 

The currently available prototype is built in Java, to allow for function evaluation. Over the next year, 

we plan the investigation of the scalability of this prototype for the size of the intended emulation 

set-up on PlanetLab, possibly moving to other server technologies if needed (e.g. node.js).  

12.4 Prototype Evaluation 

We have deployed an initial version of a service resolver, operating in a single domain and with a 

shortest available instance heuristic. In this first version, the service resolver has a full and up-to-date 

view on the network topology, the network load and the service instance load. This is realized using 

the discrete event-based simulation framework MASON. Each time a request arrives, an internal 

state manager adjusts the state accordingly (e.g. decreases the available number of session slots).  

The prototype algorithm has been evaluated starting from the router-level topology that is 

continuously collected and updated by CAIDA [CAIDA]. We reduced this dataset to the nodes that are 

geolocated in France. IP-routers having the same geographical coordinates where aggregated and 
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only links between the reduced subset were maintained. Finally, the link cost was set to the 

geographic distance between the routers. The resulting topology comprised 77 nodes and 98 edges.  

Subsequently, we have randomly divided the nodes in 16 client nodes and 61 server nodes 

(execution zones). Service requests are generated from these client nodes following a Poisson 

distribution (mean λ) with exponentially distributed request interarrival times. Each client node thus 

contributes equally to the demand load, which we advocate by the fact that we simulate the network 

of one country where people are likely to have the same cultural preferences and diurnal patterns.  

For each service a number of replica instances is deployed on randomly selected execution zones.  

Each request is assigned to a particular instance by a centralized service resolver, who selects the 

closest available instance. The session length was set identical for each service.  

Simulations were carried out on the Virtual Wall emulation environment of iMinds [VWALL]. 

 Average network cost 12.4.1

We first evaluated the impact of increasing demand for a single atomic service. The network cost is 

calculated as the cost of the link between the client node and the selected instance. Each service was 

deployed randomly on different execution zones, with a varying number of session slots. The service 

connection time was fixed to 10. 

 

Figure 25: When each execution zone where the service is deployed announces more requests, the 

average network cost of connections between clients and servers decreases. 

Figure 25 illustrates the trade-off between network cost and deployment cost. When each execution 

zone can handle only a limited number of parallel connections, the network cost increases with the 

demand because client requests are resolved to instances in more distant execution zones. When 

each execution zones announces abundant session slots, each request can be handled by an instance 

in the closest execution zone even in high demand scenarios.  
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In the evaluated configurations, there were only rejected requests in the scenario with the highest 

demand and the lowest capacity (λ = 0.5, 10 slots per instance). When the load increases, the 

network cost will saturate to a level where each instance is continuously occupied. 

 Average cost per client node 12.4.2

Figure 26 depicts the average network cost of requests per client node. The network cost from each 

client nodes increases with the demand, but the relative cost increase between the high-demand 

scenario (λ = 0.5) and low-demand scenario (λ = 0.033) varies greatly from 21 % (node 453) to 216 % 

(node 265). With other service placement algorithms, this difference might be smaller.  

 

 

Figure 26: Each execution zone provides 10 session slots.  
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13. CONCLUSION 

This deliverable presents the status of the design and implementation of the service resolution layer 

in the FUSION framework. This layer is conceived as an overlay for the IP stratum and provides name-

based selection of instances; based on network metrics and service instance availability. 

In this second year, we have progressed on the definition of a multi-domain organisation of the 

service resolution layer. We have identified the different policies that naturally arise in a setting with 

different stakeholders. From this study, we have defined all interfaces of the service resolution layer. 

The functionality is been translated into a comprehensive new protocol: the Networked Services and 

Resolution Protocol. This protocol is not only used for service requests; but also contains messages 

for exchange of resolution information and organisation of the resolution overlay. 

An initial prototype implementation is available for a single domain, and the design of resolution 

algorithms has started. 

For year 3 of the project, we have identified the following topics: 

• The different roles in resolution policy enforcement and their potential impact on service 

resolution mechanisms and the overall FUSION architecture. 

• The main research idea that will be followed here is to put limits on the distance (in terms of 

network hops and/or service routing domains) on the forwarding of service availability 

updates. 

• Scalable mechanisms and algorithms for creating the intra-domain topology of service 

resolvers. Especially, we will consider whether there should be a (logical) full mesh between 

the different domains, or a spanning tree must be established. The trade-off between 

overhead and efficiency will be evaluated for different aggregation mechanisms of 

information on service availability and load. 

• Service resolution algorithms that efficiently load-balance between execution zones based 

on a forecasting of the session slots and histogram of session length. The algorithms should 

be able to run in a distributed (inter-domain) environment. Heuristics will be developed that 

trade off network performance with session slot availability. 

• Expanding the service resolution layer functionality through interaction with the 

orchestrator. This involves case where services want to do their own resolution , as well as 

composite services with dynamic service graphs. The main research challenge is to identify 

how much structural information can be embedded in the resolution layer without 

introducing complexity that would harm the scalability or performance of this layer. 

• Develop a large-scale prototype of a multi-domain service resolution layer. Two set-ups are 

targeted: one with emulated network topology on the iMinds Virtual Wall, and one that runs 

on the actual Internet (PlanetLab). 
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APPENDIX A: NSRP MESSAGE SYNTAX 

NSRP consists of a set of binary messages and extensions. The general format of the messages can be 

seen in Figure 27. 

 

Figure 27: General NSRP message 

Where: 

• Version (4 bits): is the version of the protocol 

• Message type (4 bits) indicates which type of message follows the generic header. 

• Next Option 

 

The majority of NSRP messages deal with resolution from names to locators. Names can have 

arbitrary size and belong to any name space of format. NSRP treats them transparently. 

Locators can have several components: IPv4 or IPv6 addresses, port number, protocol number or 

prefix size. They can also be a tunnel end-point. These combinations are indicated by the following 

set of flags: 

i. IPv4 or IPv6 

ii. Port (included or not) 

iii. Protocol (included or not) 

iv. Tunnel (yes or no) 

v. Prefix (yes or no) 

vi. Multiple locator endpoint. This means that more than one locator is going to 

be used to identify the same service instance. For example a game service 

can have an audio server, a video server and a IM server. 

Messages 

There are 8 types of messages. Here we include a brief description and their fields: 

1) REGISTER/UPDATE 

 

This message is sent to the local resolver to announce the availability of a service instance. It 

should be sent periodically to refresh the state in resolvers.  

Fields: 

• Size of Name (8 bits) in bytes 

• Name: Name of the service this instance is replicating 

• Send to source FLAG (1 bit): if equal to 1 then resolution should be sent back to the 

source of this message. This forces implementation of remote resolution. 

• Information Time to live (8 bits): Time in seconds this message is valid for. If not 

refreshed information should expire. If equals to zero, means to deregister an 

instance 

• Number of Locators 
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For each Locator: 

• Locator type  

• Locator 

• Preferences 

 

2) SUBSCRIBE  

 

This message is used by service resolvers to subscribe for updates to services from other 

service resolvers. Each subscription has an expire time (Subscription Time to Live) and any 

updates should be forwarded until that time arrives. Subscriptions should be renewed before 

that. 

Fields: 

• Subscription ID 

• Type of Element (Name, Catalogue, wildcard) 

• Size of Element 

• Element 

• Subscription Time to Live 

 

3) QUERY  

 

This message is used to request resolution of names (1) Generated by a client that wants to 

resolve a name and (2) possibly forwarded by a service resolver to another resolver in the 

case of interdomain resolution. 

Fields: 

• Query ID 

• Type of Element (Name, wildcard) 

• Size of Element 

• Element 

• Query Time to Live 

• More than one replica (flag) 

 

4) DATA 

 

A DATA message contains resolution for one name or a catalogue entry. 

If it’s catalogue entry (Subscription ID reply should be of a Catalogue Subscription there 

should be two locators: the representative locator and the resolver locator). The utility 

function of the service can be included as an option. 

Fields: 

• Subscription ID 

• Number of Locators 

• Locator Type 

• Locators 

• Preferences 

 

5) QOE REPORT   

 

QoE reports are sent from clients to their local resolver 
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Fields: 

• Size of serviceID 

• ServiceID 

• Type of Source Locator 

• Source Locator 

• Type of Destination Locator 

• Destination Locator 

• Number of observations 

• Type of Observation (Delay, Goodput, Loss) 

• Observation 

 

6) HELLO 

 

This message is used by resolvers to build the subscription overlay. It is sent by resolvers to 

authenticate themselves before messages get exchanged 

Fields: 

• Resolver ID 

• Signature 

 

7) ERROR 

 

This message contains an error and additional data for the error 

Fields: 

• Error Code 

• Size of extra data 

• Extra data 
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OPTIONS 

The following options are defined: 

1) Session slots: This allows a Zone manager to describe available and used service slots 

• Available session slots 

• Used session slots 

 

2) Histogram of service: This allows a Zone manager to describe an histogram of service times 

that characterizes how the service is being used 

• Size of histogram 

• Histogram 

 

3) Utility Function: This option allows a service to define an utility function. That is how varying 

QoS (delay, throughput, loss) affects the user utility of the service 

• Size of utility function 

• Utility function 

 

4) Security: Instance authentication – This option allows a Zone manager to authenticate that is 

authorise to instantiate a particular services. 

 

This option allows a Zone manager to proof that he can announce instances of a given name 

 

5) Security: Server describes permission – This allows a Zone manager to describe who can 

access the service. This is sent to all the resolvers so that they only resolve if authentication 

is successful. This should be used with the “Send to source” flag so that final resolution is 

made by the Zone manager (and potentially interact with the underlying network to switch 

on permissions. 

 

6) Security: Client permission: This is the client counterpart to option 5. Client authenticates at 

the edge that it can access the service  

 

7) Transparent Data (sent to instance, sent to client): This implements the “Invoke” 

functionality. Data is sent to the instance and this can return data back. 

 

8) QoS constraints: This option allows a client to constraint the result(s) it receives. For example 

it may restrict to instances within X milliseconds. 

 

9) Client information: IP address: This option allows a QUERY message to be sent “by proxy” for 

a node but indicating that the proximity corresponds to another IP address 

 

10)  Client information: GPS information 

This option allows a client to include GPS information in order to help the selection of closest 

instance 

 

11)  Routing hints: This option allows a client to restrict the returned instances to a subset. This 

happens when resolution is done remotely. 
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A mapping of which messages can carry each option is shown in Table 7. 

Table 7: Options mapped to Messages 

 Register Sub. Query Data 

Session slots X   X 

Histogram X   X 

Utility Function X   X 

Security: 

Instance 

Authentication 

X   X 

Security: Service 

permission 

X   X 

Security: client 

permission 

  X  

Transparent 

Data 

  X X 

QoS Constraints   X  

Client 

information: IP 

address 

  X  

Client 

information: GPS 

location 

  X  

Routing 

restrictions 

  X  
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ERRORS 

The following errors are defined for the error message 

1) Name not found 

2) Instance meeting QoS constraints not found 

3) Access Authentication failed 

4) Register Authentication failed 

5) Resolver not responding 

6) Badly formed packet 

7) Timeout 

 


